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FOREWORD

Thi;reportis submittedto the NationalAeronauticsand

SpaceAdministration,GeorgeC. MarshallSpaceFlightCenter,Huntsville,

Alabamain partialfulfillmentof the requirementsunderContractNo.

NAS8-24438.The principaltechnicalobjectivesunder this contract

involvedthe studyof spacevehicleplumeriseand the developmentof

diffusionmodelsfor normaland abnoi_naloperationsin the 5 to 30 km

regionof the atmospherefor launchesconductedat the KennedySpace

FlightCenter.

The filmsand meteorologicaldata used in the analysisof
m

! cloudsgeneratedby staticfiringsand the vehicletrajectorydataused

in generatingthe inputsfor the trialcase of the diffusionmodel were

suppliedby the following: Mr. CharlesK. Hill,the ContractingOfficer's

Representative,Mr. Johr,W. Kaufman,the alternateContractingOfficer's

Representativeof the AtmosphericDynamicsBranchof the Aero-Astro-

DynamicsLaboratory,and Mr. WilliamW. Vaughan,Chiefof the Aerospace

Environment Divisionat the GeorgeC. MarshallSpace FlightCenter.
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1.0 [[_TRODUCTION

,his report presents the results of a study by 7EOMET, Incorpo-

rated, for the George C. Marshall Space Flight Center (MSFC) during the

period I June 1969 through 31 May 1970, in compliance with Contract

NAS8-24438 entitled, "Exhaust Cloud Growth and Debris Fallout Phenomena."

The work was carried out in the form of two separate and inde-

pendent tasks as indicated in the contract title; the first task (described

: in Section 2.0) involved the analysis of films of the exhaust clouds from

static rocket engine test firings at MSFC and the use of these data in

theoretical and statistical investigations to study the ,ise and growth

of such clouds. The second task (described in Section 3.0) consisted of

the development of a predictive model to describe the diffusion and fall-

. out of debris from rocket engine exhausts in launches from the Kennedy

_ Space Flight Center (KSC) launch a_ea. The background and objectives

for each of these two major tasks are discussed in their resuective

sections (2.0 and 3.0).

Z
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2.0 TASK I - EXHAUST CLOUD RISE AND GROWTII

Most of the recent resoarch programs dealing with air pollutior:

place their emphasis on the time variation of air pollution because of the

increasing amounts of foreign materials bein(!introduced into the air fro_,

such sources as automobiles, factories, open fires, explos jns, etc. While

investigationshave been conducted on the nature of buoyant clouds, most

of this research is based on either small-scale or large-scale clouds as

generated from smnke stacks or atomic explosions. Of considerable interest

to NASA's vehicle program, is the type of clouds generated by large space

vehicle engines, The informationrequireu is, for example, how fast do

such ciouas rise? what is their volumetric growth rate? what is the r_axi-

mum height to which they ascend until they become env-:ronr_entallystable?

and where and how is th_ cloud transported and diffused until the partlcu-

:: lates settle to the _urfacu?

• o

.. NASA Is cot}cornedv,ith this probl.-:,because of resu_t_ _r(j.:,

investigatio.,isof so!_d an(_li.iuidpropel!ar,t_, it _ :T_ov$_ that exp.-...:..i

froi_:-_,v:,.t),DeS.offuel CaF_.......be Dunaen+ t_,_i,'e:3.nr".,_,,,'_,',*,,.,.,tox_.c_._..

i1_hal..d..Use of suet'_u_:.. ',.Jouldrequire _-S-: .:j,_i_3;.,:.of _,,osp._e'-,,'_'u,.

condition: and the _': " " "L_.; zdtion of dtln_'S_,;lu;'". O f".J-.'......,;;re.;'_;):.'..t

dete--.'neti'eexpected t-ar_sport,dispersio,-,a_}ddeposition c'fsbc!;fuel

by-produc_-s. Past v:orkdo,)e')yNASA on the :r:,,i,.-..w,"- ...(;-p,-,'r;cd;f;,,-

sion, v.,niielimited has resulted in contri,,utier__"ad.-; ..i_variou._

NASA centers (in-house and by cont,-actualefforts).

The objective of this task is to study the vehicle enginc exhaust

cloud rise and growth rate phenomena. Informationis also desired on the

maximum height to ,-;hichthese clouds rise before they become environmentally

2
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i stable. Movie films of static vehicle tests conducted at MSFCengine were

| . .

made available for extraction of data, plus photographs of vehicle exhausts

taken during launches. Local atmospheric data were made available as

observed during the static firings; however, synoptic weather phenomena

were also available to be related to cloud rise and growth behavior during

the periods in question.

The following sections describe the treatment of the film data,

including the development of the theory and statistical analysis of the data.

2.1 Analyses of Film Records of Static Firings of Rocket Engines
;

A major part of the contract entitled "Exhaust Cloud Growth and

- Debris Fallout Phenomena" is corcerned with the analyses of MSFC film data.

The following discussionwill trace the development of these data from

' receipt of all films from MSFC to their ultimate preparation for use in".; °

1

;_ theoretical model validation (Section 2.2) and statistical interpretation

_: (Section 2.3). The discussion is divided into the following phases:
TC

• reasons for selection or rejection of cases and synopsis
of the method used to reduce the raw data (2.1.1);

% :-
• statistical comparisons of independent readings of the

-_ data (2.1.2); and
s:

• synopsis and verificationof the atmospheric drift correc-
•" tion technique (2.1.3).o

The films studied represent twenty cases from some forty records

originally provided by MSFC of static firings during 1964 and 196_. An

early screening process focused attention on the twenty cases described

in the following sections. These were single camera records.takenfrom a

_ distance of about 4000 meters from the static firing test stand and accom-

). panied by meteorological and engine data records.
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2.1.1 Reasons for Selection or Rejection of Each Case

:: Of the forty cases of MFSC Film Data originally sent to GEOMET,

Incorporated,as a basis for an empirical approach to cloud rise prediction

and to give meaningful input parameters for a theoretical model, as well

as statistical analyses, twenty were selected for detailed study. From

these, ten cases were ultimately selected for analysis. The ten that were

not selected were eliminated for one or more of the following reasons: the

= film record began after the initiation of firing; there was no refeFence
i
' :: point in the film for measurement purposes; no data on the engine firing

i _ were available; and the film record was too short. Table 2-I lists all
i

, available cases with the reasons for the selection or rejection of each.

: After selection of the useful cases, the data were processed.

..,. Since it was evident that the MSFC film data p_vided a keystone upon which
-._

the empirical approach to cloud rise prediction would depend, the following

:: steps were taken to ensure its accuracy:._,

• a Vanguard Motion Analyzer was used to increase the accuracy
.: in the readings of the film;

• two independent readings were taken of each case;

•..,:

• _ • statistical techniques were used to test each set of film
: readings for errors (2.1.2); and• y"

• wind data and information on the "jet phase" (see 2.1.3) were
: used to develop correction procedures.

The fil,_1analyses consisted of measuring sequenced frames using

the Vanguard Motion Analyzer. The cloud picture was divided into six hori-

zontal segments consisting of a triangle at both the top and the bottom

: and four trapezoids in between (see Fig. 2-I). From this, there was avail-
?

"'. able from each frame a total of twelve points with coordinates (X,Z). The
o, _-,

• -.. records of the location of the points were punched on IBM cards and

_".:: converted to the metric system.

_.. 4 _"

197002G539-025



J

: Table 2-I Summary of available films with quality and reasons for
;, acceptance or rejection

Case Quality Accept or Reject?

TWF050 No reference point at start, camera position reject
. * is not identified

doubtful Time to
SIC06 Good reference and data accept

iSIC04 No reference point at start reject

SA26 No reference point at start reject

•:. TWF032 Record begins after to reject
" ]WF033 Good reference and data accept

SIC05 Good reference and data accept

TWF052 No reference point at start reject

• TWF023 Record begins after to, too brief to be of use reject

. TWF025 Record begins after to, too brief to be of use reject
- TWF026 Good reference and data accept

TWF027 Good reference and data accept

i " _ TWF028 Film of very poor quality, record begins after t_ reject

i _. TWF031 Good reference and data accept
.

SA25 Record begins after to, too brief to be of use reject
•t TWF057 Camera position doubtful reject

. TWF056 Good reference and data accept

" TWF037 Good reference and data accept

._ TWF034 Good reference and data accept

!! No. 23 Good reference and data accept

' *Time when a test firing first co_ences.

To convert the data, a reference height for each case was estab-

lished, That reference was taken as the height of a tower that was in the

plane of the launch. Figure 2-I is a schematic diagram of the cloud after

._ firing and the method of measurement. The time when firing commenced was des-

" _ ignated as to. At that time, coordinates were taken of the initial firing point

I
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•:. Figure 2-1 The cloud after firing showing the methodof measurement
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togetherwith the tower coordinates.For selectedtimesthereafter,

::; coordinatesof all pointson the cloudshown in Fig.2-I were recordedin

termsof framenumberfop conversionof time and incheson the viewing

J screenfor conversionof dlstance. The measuredcoordinateswere converted
I

to the realdimensionsin the metricsystemusing the followingrelationships:

VerticalCoordinate:

ZA - ZF

• z (meters)- HA x H (2-I)

, HorizontalCoordinate:

XA - XF

'._:_ x (meters)= --Ai_X H . (2-2)

The framenumberwas convertedto time in recordsusingthe fact that24

frames per second were recorded. That relationship is:

-._

" t (seconds)= (N - Ni)124 (2-3)

where

N = frame number

Ni = initialframenumberat time to

H = actualheightof tower,CD, meters

HA = heightof tower,CD, as measuredby the analyzer,inches

_'_ XA = coordinateof X as measuredby the analyzer,inchesi

7
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I XF = coordinate of the initial firing point (X) as measured by

the analyzer, inches

ZA = coordinate of Z as measured by the analyzer, inches

ZF = coordinate of the initial firing point CZ) as measured by

the analyzer, inches.

The following paragraph explains the use of the preceding method.

•Table2-2 is a sample of output from Case TWF 037. The initial

coordinates of the firing point are ZF = 2.195 and XF = 2.815 and the

measured height of tower CD is 2.454 - 2.168 or 0.288. The initial frame

: number is 7650. Using (2-I) and (2-2) for point l, we obtain ZA = 126.54
.:

, meters and XA = 179.82 meters. Using (2-3), the corresponding time for the

;• frame is 7 seconds. The same procedure is followed for all other points

:: and all time steps.
-- .,...

- _ Table 2-2 Sample of data taken from case TWF 037

• --'. X Y X Y
ICoordinateCoordinate Coordinate Coordinate X Y

: Lowest Lowest Highest Highest Coordinate Coordinate
•- Frame Point Point Point Point at at

::, Number (B} (B) (A) (A) Point Point

78182.81s 2.19s 3.299 2.5221 3.191 2.468
" 2 3.432 2 2.468

•

3 3.124 3 2.413

4 3.447 4 I 2.413
|

5 3.077 5 ' 2.358

6 3.472 6 2.358

7 3.014 7 i 2.303

: 8 3.419 8 tj 2.303
9 2.953 91! 2.248

_ 10 3.264 I0 I 2.248
" : ;:'. , ,, . .......... I ,i

i
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.:c 2.1.2 StE}_tisticalCo__mparisonsof IndependentReadin_gs_o_fthe Data

•C- In orderto ensurethe highestdegreeof accuracypossiblein the
o.-

readings, each film was read independently by two different analysts.* This

providedthe basic inputfor the statisticalerroranalysesprogramdes-

cribed in this section. In essence, this program compared the replicate

readingsof a pointand calculatedthe rootmean squareerror for each

set of films. These results were utilized both to minimize typographical

;..
errorsin the data cardsand to obtainan estimateof the uncertaintyof

the measurements for each film set.

After the raw film data had been reduced, the two independent

: readingsfor each ca_ewere compared. At everycoordinatefor each time

. step,the followingwere obtained: the differencebetweenmeasuredvalues;
.F

_. themean of the differences;the mean of the absolutevalueof the differences;
•...'-

£

:-"_ and the rootmean squareerror of the differences.The rootmean square

.-._ error is defined as the square root of the sum of the squares of the

. _: differencebetweenmeasuredvaluesdividedby the totalnumberof readings,

i.e.,
• •

;:-

:: {N I/2
" (RMSE)j i l RAij Bi (2-4).t-." = N

!

I
I

I
!

; _i * The problemsrelatedto tilecapabilityof a film recordof the visible
, /, cloud to represent the real dimensions of the cloud have not been considered

._. in thisstudy. For thesefirings,the film recordis the only set of data
_- describing the cloud behavior and thus has been used "as is" :For that

purpose.

l

l
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°_'.

'" where

1.. N = the numberof framesanalyzed

: i = the framenumber

j = indexof pointbeingsubjectedto erroranalysis
(seeFig.2-I)

RS. = readingof pointj by readerS in the ith frame.
lj

Referringto Fig. 2-I,nineteenseparatecomparisonswere run for each time

:. increment.A checkwas made of all differencesfor all coordinatesfor

: each case. Where abnormallylargedifferenceswere found,the original

_":: datawere checkedfor puncherrorsand _ardsbeingout of sequence. By this
"-..;.

v''= method,typographicalerrorscouldbe separatedfrom the errorsof measure-

•':, merit.Table2-3 showsa typicalcomparisonof the two readingsfor the
J -:"
J _'! Y-coordinateof the highestpointof the cloudfor CaseTWF 037 after these

:"_ typographicalerrorshad been removed.What remainsin each caseis the

. "_,i randomerrorassociatedwith the actualreading. It is seen thatthe RMSE
Z"

- .:- is about 12.6meters,which is a typicalvaluefor al_ coordinatesfor this

-': case. _or othercoordinates,thiserror rangedfror,_5 metersto 30 meters.

" 4

'. ::_ Generally,the clearerthe film,the lowerwas the error. The average
• .- ,.4

_:" a,_ongmeasuredvalueswas usedas the actualcoordinatevaluefor eachpoint.

These v_lueswere usedin the correctiontechniquedescribedin Section2.1.3.

: 2.1.3 CorrectionTechniquefor Cloud Drift

2.1.3.1 General

Afterthe raw datawere convertedfromfilmto actualsizemeasure-

ments (2.1.1)and analyzedfor errors (2.1.2),an allowancehad to be made

_) for any motionof the cloudtowardor away from the cameracausedby the

" _ initialjet effectsand/orwind drift. The procedurefor determiningthis
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Table2-3 Typicalcomparisonof two readingsfor Y-coordinatefor
/ case TWF037

Y-Coordinate of Highest Point of Cloud

Time (sec) 1st Reader 2nd Reader Difference

3. O0 91.20 81.68 9.52
5.00 101.68 112.56 -10.88
7.00 126.91 143.04 -16.12

9.00 147.48 161.02 -13.54
I1.00 174.65 187.99 -13.33
13.00 213.07 221.21 - 8.14

15.O0 237.91 248.18 -l0.27
17.O0 265.85 278.67 -12.82
19.00 310.48 306.03 4.45

21,00 318.63 329.09 -10.46
25,O0 371.81 370.52 I.29
29.O0 411.78 407.65 4.13

'_ 33.O0 428.08 442.82 -14.73
37.00 462.62 472.14 - q.51
41.O0 486.69 496.76 -lO.07

" 45.O0 526.66 521.38 5.28
:" 49.O0 541.41 548.74 - 7.33
: 53. O0 563.53 580. O1 -I 6.47

_ 57.O0 587.60 603.46 -l5.85
61.00 626.41 633.95 - 7.54
65.O0 643.l0 657.40 -l4.29

69.00 679.19 685.54 - 6.34
" 73.O0 701.70 700,78 0•92

•;" 77.00 716.45 709.38 7.07

81.00 734.69 735.17 - 0.47
.: 85.O0 749.44 737.91 II.53
, 89. O0 742.06 755.89 -13.82

93.O0 797.95 789.89 8.06
97.O0 803.39 784.8l 18 $7
lO1.00 798.34 829.37 -31 :].i

105.O0 827.84 830.54 _"- _,69
109.00 803.ll 824.29 -20.52
113.00 816.58 838.75 -_. 17

:, Mean of differences= -6.596

,; Mean of absolutevalueof differences= 10.888

•_ Rootmean squareof differences= 12.671

:.-_, Largest difference without regard to sign = -31.030
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i a11owanceis describedas follows: The totaltest firingperiodwas divided

intotwo regions,one in whichjet effectswere dominantand one in which

atmosphericeffectswere dominant. For each region,a correctionwas applied

whichwas relatedto the amountof travelof the cloud towardor awayfrom

the camera. AppendixA describesthe mathematicaltechniquesinvolvedfor

eachof thesecorrectiontechniques.

Applicationof thesecorrectionproceduresrequiresknowledgeof

the transitionheightwherejet effectsbecomenegligible.However,this is

difficultto definefrom the films. The followingmaterialdiscussesthis

problem.

Two procedures,one objectiveand the othersubjective,were

developedto locatethis transitionpoint (seeFig.2-2).

• 2.1.3.2 ObjectiveTechniquefor DeterminingTransitionHeight

This techniqueis basedon the assumptionthat the first sig-

_i nificantdecreasein the magnitudeof the verticalvelocityof the cloud

is due to the fact thata changein phasetook place,i.e.,jet effects

becamenegligible.For each of the ten trials,the changein heightof the

• ; topmostpointof the cloudwith time (dzldt)was computeoas a function

of height. Table 2-4 showsdz/dtas both a functionof timeand height

• for a samplecase,No. 23. Notewas made of the heightat which dz/dt

firstbeganto decrease(time- 7 sec.). The levelpreviousto thatwhere

dz/dt beganto increaseagain (time- g sec.)was selectedas the transi-

tion height(time- 7 sec.). The heightis 172 meters.

2.1.3.3 SubjectiveTechniquefor Determinin9 TransitionHeightC

Thistechniqueis basedon the assumptionthatthe reg;onin which

, the phase] influenceendswill be identifiablein the filmrecordas a sig-
• t

• nificantdeviationof the cloud'sdirectionof travelfromthe jet axis.

• 12

4
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Ftgure 2-2 Location of transition height where Jet effects becomenegligible. Line BB' is at thts height.
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Table 2-4 Changein topmost point of cloud with time as a function of
time and height for case No. 23

Time (sec) dz/dt (m sec-r) _ _ Iz (meters)

3 12.6 108

5 19.4 133

7 10.0 172

g 13.4 192

11 23.7 219

: 13 !7.6 266

15 15.2 302

17 16.8 332

19 20.8 366

21 16.2 407

25 14.7 472

29 12.3 531

33 9.4 581

• 37 4.8 619

4! 10.1 638

45 l O.l 679

49 7.8 719

i 53 8.7 751

For each of the ten trials, the cloud was observed for several seconds

duringwhichthe rocketwas firing. The heightcoordinatewas recorded

whL{_the cloudappearedto deviatefrom the jet axis. _InFig.2-2

thisheightis given by the lineBB'. Two independentreadingsof this

levelwere taken. As might be expected,the two readingstendedto vary,

but theiraveragedifferenceswere on the orderof 25 meters.

7

._
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2.l.3.4 CGmparisonof the Objectiveand SubjectiveTechniques

i_:_ fable2-5 is a comparisonbetweenbothtechniques. In addition,

bothreadingsusingthe subjectiveprocedurewere compared. It is seen

thatthe two subjectivereadingstendedto be comparable,and the objective

methodcomparedfavorablyto the subjectiveone,with theirstandarddevia-

tionsalso:omparable.

.: Table 2-5 Transitionheightsas computedby the objectiveand subjective
;- techniques

SubjectiveTechnique ObjectiveTechnique

;'_ Case Ist Reader 2ridReader

_ TWF037 223 197 134
• _."

-" TWF034 174 155 148

_: TWF031 136 145 293

TWF026 166 146 196
_:.

- _ TWF027 176 176 204
:,= . -'._ TWF033 185 132 118

... _._"
.,._,

TWF056 151 202 217

•_: SICO5 154 9g 197

c SIC06 145 73 220

- ._ F,lo. 23 99 34 172
• ;._. _'

Mean _ 160.9 135.9 189.9
_- ' Standard i
..

Deviation .' 31.1 50.9 ! 47.8

2.1.4 Validationof the CorrectionTechniqueand Presentationof the Data

. for Use in Analyses

• :.._i: A techniquewas devisedfor verifyingthe validityof the cor-

_ rectionmethodsemployed. This techniqueis describedin AppendixB

[', and represontsa coe_oinationof synthesizinga knowncloudbehaviorand

15
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studying the goodness of applied corrections, plus detailed case studies

of the actual ten test runs. The verification technique supports the cor-

rection of the data for atmospheric drift toward or away from the camera

and was used to derive the final numbers characterizing cloud behavior for

each test firing. Some of the finally derived data for all cases are pre-

sented in Tables 2-6a and 2-6b and cover the following: tiledependent

I
i parameters of cloud height (z), rise rate (dz/--_, area (A-), and the rate
!

of increase of area (_) for the jet phase (phase I), the hot plume phase

(phase 2), and the two phases combined; the engine parameters of fuel ratio

(F), duration of firing (D), and thrust (TH); and the meteorological para-

' meters of mean atmospheric temperature (T--),temperature change with height

(dT/dZ), mean wind speed (u), wind speed change with height (du/dZ), mean

atmospheric pressure (p-)and change with height (dp/dz), mean relative

• _ humidity (RH-),and mean atmospheric density (_. The data on observed

- _ cloud height (z) and area (A) as a function of time after firing for all
:

' cases, however, are tabulated in Appendix C. Also included in Appendix C

are observed temperature (T), pressure (p), relative humidity (RH), wind

_; • direction (d), and wind speed (u) at levels from the surface to 2000 meters

for all cases.

These data were the principal source of information for the

validation studies of the theoretical development (Section 2.2) and For the

multivariate statistical analyses (Section 2.3).

i 16(
•, t
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2.2 Theoretical Study
_j

•" 2.2.1 General Background

Numerous theories on the rise of a heated buoyant cloud have

been reported in the literature. However, few attempts have been made

' to apply these theories to an exhaust cloud produced from static vehicle
i
'; engine firing. Recently, Hage and Bowne (1965) computed the maxim_n

height attained by such a cloud using equations developed by Machta

_i (1950), Sutton (1950), and Morton, Taylor and Turner (1956). However,

no features of exhaust cloud rise phenomena, other than maximum height,

. were examined in their study.

- In this investigation,a physical-numericalmodel has been
,+..

- developed following a theory of the bent-over plume of heated gas from

•:-_ a continuous source developed by Priestley (1956). In addition to the

"_.

- maximum height of cloud rise, this model predicts other features of

:: exhaust cloud rise and growth such as instantaneous height, rise rate,

growth rate, and temperature excess of the cloud. Furthermore, environ-#.

': mental factors such as wind and thermal stability, that are often neglected

•;._ in models of this type, have been taken into account in this model. All

:_ these refinementsmake this a very useful and general model which may be

_ applied not only to exhaust clouds produced from static engine firing

but also to other types of buoyant clouds from a heated source.

2.2.2. A Physical-NumericalModel for Exhaust Cloud Rise and Growth

Based on the formal analyses given by Rouse, Yih and Humphrey_

_. (1952), Priestley (1953, 1956), Priestley and Ball (1955), and Morton
6_

"._

-_

_i_" 19
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Taylorand Turner(1956),a physical-numericalmodelfor exhaustcloud

riseand growthwas derived. The model was designedto yield the follow-

ing informatonon exhaustcloud behavior: (1)the maximumheightto

which the cloudascentsbeforeit becomesenvironnentallystable,(2)

the heightof the cloudas a functionof timeafter its formation,(3)

the rise rateor the verticalvelocityof the cloudas a functionof

heightor timeafter its formation,(4)the temperatureof the cloudas

a functionof heightor timeafter its formation,and (5) the growthrate

of the cloud.

The ascent,spreading,and diffusionof the exhaustcloudwere

. regardedas subjectto threephases(Priestly1965). The first phase

• beingthe jet phase,duringwhich the ex_austcloudmoves throughthe

- _ resistingair and is subjectedto turbulenceinducedby its own motion.

In the secondphase,the jet-inducedmotiondecreasesin intensityand the

:; atmosphericturbulencebecomesdominant. The mixingof exhaustgas with

::. ambientair at thispoint proceedsat a ratedeterminedby atmospheric

properties.The maximumheightto which the cloudascendsuntil it be-

• comesenvironmentallystableis reachedduringthisphase. The thirdand

final phasebeginsafterthe cloudhas lost its effectiveindependent

• _ motionand buoyancyand the stage is set for pureatmosphericdiffusion.

Sinceour objectivefor Task I is to studycloudriseand growth,only

the firsttwo phaseswill be simulatedin the model.

• - •. ..-

•_ 20

. .';. .. -_
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2.2.2.1 Model Equations

-" 2.2.2.1.I Equationsfor the FirstPhaseof CloudRise and Growth

+

Z

"%- _--

i-! Figure2-3 Schematicsketchof a circ ,r-syvmnetriccloudcolumn

ii The derivationof modelequationsbegins", , , very general

;_: systemof a circular-symmetriccloud columnas sketchedin Fig.2-3.

•_i.. In Fig. 2-3, S is the source point, r is the radius of the ring, and

I _" z is the verticalcoordinate The basic equationsgoverningthe first"'-i' °

_, phaseof the riseand growthof the exhaustcloud is the equation

._. of continuity,

'-'_ @ (rWp)+ D (rup)= O, (2-5)
_.-..

:_ the equationof verticalmotion,--"C

L (rw2p)+ ) (ruwp)= r pg + (rr) (2-6)
'

and the equation of heat conservation

:_ _ (rwop)+ _ (ruop)= 1 ,_ (rF), (2-7)
,_ B-z- _ c _r
_ P

where

i
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,?,

r ---the radius of the circular-synznetric cloud,

• z = the height above the source of the cloud,

w = the vertical velocity of the cloud (dz/dt),

j p = density of exhaust gas in the cloud,
u = radial velocity of the exhaust cloud,

e = potential temperature in the cloud,

ee = potential temperature outside the cloud,

8' = excess potential temperature of the cloud (e-Oe),

= vertical turbulent shearing stress,

• g = acceleration due to gravity,

Cp = specific heat of air at constant pressure,

.: F = radial turbulent heat flux.
4"

i! _ All quantities in Equations (2-5) through (2-7) refer to meanvalues for
the ring-shaped cloud surface. It is assumedthat the ambient pressure

i is undisturbed, that the vertical turbulent mixing is negligible corn-

:: pared with the horizontal, and that the density is constant except insofar
l

as it affects the buoyancy.i

FromEquations (2-5) and (2-6) may be derived the kinetic

• energy equation

+ o' (,r)(2-8)

and fromEquations(2-5)and (2-7)we have the followingequation:

,)ee
a (rWO'p)+ _) (ruB'p)= 1 3 (rF)- rwp • (2-9)
aT _ Cp ar

Integration of E.quatton-(2-6) from r = 0 to r = = gives

-..). 22

i

I
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i
I
I

4

f: f: o'd rw_,,dr= r _gdr (2-I0)
- d--_ _'e

whereruu is assumedto remainfiniteas r approaches_.and xr and w

approach zero at r = _o. Integration of Equations (2-8) and (2-9) for

the same iimitsyields

_f-_-_ Trw-_,:dr rw 7e pgdr oXr _-_dr (2-11)o 0

frwo'pdr= - prw _T dr (2-12)o o

where,again,rpuremains finiteand rF, xr, w and e' all approachzero

atr=-.

BothPriestleyandBall (1955)and Morton,Taylorand Turner (1956)
L

: assumedthatthe lateralprofilesof w and o' are of similarshapeat dif-

: ferentdistancesfrom the source. FollowingSutton (Ig50)and citingresults

from laboratoryexperimentsby Rouse,Yih and Humphreys(1952)and by

Railston(1954),Priestleyand Ballassumedthatthe profilesare Gaussian

_ and themeasuresof disp_-sionare approximatelythe same for w and _.
!

: Written_nmathematicaltermswe have

w__= exp (-_r2 ) (2-13)
wo 2R2

t

_'=exp(-r_L) (2-14)
% 2R2

wherewo, •"o are valuesof w and o' on the axis of the cloudand R is some

.: linearcharacteristicof its lateralextent. Differentassumptionswere

.'_ made by different investigators of the rate of entrainment. Morton, Taylor

1970026539-044



and Turner (1956) argued that the rate should be proportional to the

ascending velocity and to the surface area of.the cloud element, while

Priestley and Ball assumed that the cloud experiences a vertical drag

proportional Lo the square of the ascending velocity. The latter as-

sumption was expressed as

: f (r) (2-15)
l 2

3" ,.Wo

where the function f is yet to be defined.

With the relationships expressed in Equations (2-]3), (2-14)

and (2-15), we can now integrate Equations (2-I0), (2-11) and (2-12) to

obtain

d (R;_w2): 2R:,,_'-- --g (2-16)
.., dz ee

0 I
_- (R2w_) = 3R2w_g - cRw3 (2-17)
dz oe

'Ue

: d (R2w':')= - 2R_w _zd-_ (2-18)

: where c is a profile constant and the subscript o has been dropped.

m
i The combination of Equations (2-16) and (2-17) yields the following:
I

dR= c
dz

or R = cz + constant. (2-19)

The constant c may be regarded as a spreading coefficient.

, Priestley (1956) argued th)t Equations (2-16) through (2-19)

• apply, not only to a circular-symetric cloud colunm (under calm wind
t

. • : 24° ._
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!
-" conditions) as sketched in Fig. 2-3, but also to a bent-over plume (under

(- _,- irlfluenceof wind u) as in Fig. 2-4. He maintained that the relative

motion between plume and air is the source of spreading during the first

phase, and that the only modification necessary when applying the system

of equa2:_ns to a plume in a crosswind of speed u, is to make c, the

spreading coefficient variable, as a func"ion of u. He further suggested

that c is proportional to the square root of wind speed u, but has a

: value of 0.1 under calm conditions. For details of Priestley's argument, the

readers are referred to Priestley's 1956 paper.

., >wind speed u> _ _' _"-E t"

-.

i!' Figure 2,-4 Schematic sketch of a plume in a crosswind of speed u.
S is the source point, SS' is the center line of the

":'. plume SO and SP are the boundaries of the plume
"I;

2";

Under neutral conditions (')fJe/0z = O) the solution to Equations

(2-16), (2-17) and (2-18) is given by (2-19) together with

[3A_ 1 Zo* wo3Zo3I/'_L w : (_ ) + -- -] _ (2-20)
;,_ 2o c2 z _ z3
•t. e

,J'- (2-21)

A

_ C2 Z2W
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where
i

II • _.= Q/_r_Cp(Q being the heat source strength),

z ° = the height at the source, and

w = vertical velocity at the source.o

No general analytical solution has been found when t__] st=atifi-

.. . how_.ver,the solution can be foundcation is not neutral ( e/.z # o) ' •

numerically from the following equation (Priestleyand Ball 1955).

e g -.z

where all boundary conditions at z = z° are assumed to be known.

2.2.2.1.2 Equations for the Second Phase of Cloud Rise and Growth

:" The equations for the rise and growth of the exhaust cloud

• during the second phase are
3.

:" dw _ g ' - kw (2-23)dt
_= e

,'o

d_'L:_ k.,' (2-24)dt

.i
, where -he mixing rate k is -_function of the effective radius of the

cloud and t:leenvironmental eddy viscosity K.

=. The sol_Lion of Equations (2-23) and (2-24, _r ,_eutral

strati;icat:onwas given by Priestley (1956i as

gt;' -kt
w = (w + _ t} (2-25)

" 'Je e

• -kt
J' : ( -e ) (2-26}

o,.

26
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where the variabl_.swith subscriptI are thosevaluedat the transition

from phase1 to phase2 and t is timefrom the transition.Equation

(2-25)can be integratedto yield the heightas a functionof time and

the maximumheightthe cloudwill reachunder neutralconditionsas

w_ go'1zm- z, --F + (2-27)
k2oe

where zm is themximum heightand zz is the heightreachedat the

transition.The maximu,_1heightfor thermalstratificationsotherthan

neutralwas given(Priestley1953)as

: o_6_..el)_ D°ezm - zI = (kwI + I( _ + k2). (2-28)

: Notethatwhen _Oe/_Z= O, Equation(2-28)becomesEquation(2-Z7).
.,

2.2.2.1.3 The Transitionfromthe Firstto the SecondPhase

The transitionfromphase l to phase2 was definedby Priestley

• (1956)as the pointat which

(._i) i dw" : (_z)2 (2-29)

i
with the transitionheightbeingzI. When wz and w2 are plottedas a function

of z, z can be easilylocatedgraphically.: 1

Spurr (1957)showedthata cubicequationin z 2 can be c_.r:_,_d
i

to computez,:

I [3--AL+ 1 (Wo3Z03 3Aee-_C )1 1 (2-30)
4 OeC2 _ " 2- 102 = "k3z1 zz2

e

. . -e

._.

27
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2.2.2.2 The General Model Characteristics

The general characteristicsof the model may be summarized

as follows:

(1) The model formulations are general In nature, applying to

all types of buoyant clouds or plumes from a continuous point source.

(2) The model takes atmospheric conditions such as wind, temper-

ature and therm._lstratification into account.

(3) Analytical solutions to model equations under neutral thermal

: stratification are available. When the thermal stratification is non-neutral,

_, n_merical methods are to be employed to obtain solutions.

(4) Linear spreading of the cloud with height (Equation (2-19))

during the first phase is a necessary property of the model. Growth of the

; cloud during the second phase is not treated in the present model formula-

• tions.

.: 2.2.2.3 Computational Form of Model Equations

Most model equations are in algebraic form and of analytical

nature and, therefore, are readily solvable. The only equation that has

to be rewritten in f'nite-differenceform and solved numerically is'!

•; Equation (2-22), now becoming Equation (2-31):

(2-31)

[A 2 g°--e Be%Bz 41z/2Wz_}j

c-_z(j)4 w(j)| -

" t 28
• .- • .

,o ,.
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• *.."

•-_ where j is the heightindexand 0e, c and _z-- are the properly
:':;" 3%

averagedvaluesof oe, c and a-z-respectivelyfor the layerin

which the firstphaseof cloud riseand growthtakesplace. The boundary

conditionis w(o) = wo at z = zo . In the actualcomputations,a uniform

verticalspacing, z(j+l)- z(j) , of 20 meterswas usedthroughoutthe

layer.

_ The onlyotherequationwhich needsto be discussedis Equation

,: (2-30),but for a differentreason. It is recalledthat Equation(2-30)"

- is a cubicequationin z 2 • for which an analyticsolutionof zI can be.-. I

:i• obtainedonly when the followingconditionsexist:"..

.T..

-;- > 3 ___ (2-32):_ Wo3Zo3 _- Zo2
• "° .:_L oec--

> .... (2-33)•_ 4 - 27 "

. "-'_

.'_:

_-
•_;/ When eitherof the two conditionsis violated,iterativemethodswill

3_ have to be usedto obtaina solutionnumerically.Fortunately,for the

rangesof numericalvalue of constantsand variablesin this study,the

two conditionswere alwayssatisfiedand an analyticalsolutionto Equation

{2-30) was availableall the time. The methodof solutionto Equation

_: (2-30)will be describedin AppendixD,

.N_

" -'_ _ _ Ill _ I
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2.2.3 InputData and AuxiliaryEquations

• Inputdataused for model predictionsof exhaustcloud rise

and growthare tabulatedin Table2-7. Note thatthere are two types

of inputdata: model inputand raw input. Model inputdata are those

derivedfrom raw inputdata and used directlyin the computations.For

example,wo is a model inputentity,which is derivedfrom the raw

inputof V and =. However,model constantssuch as g, z and t in Table
*

_ 2-7 are directlyavailableand need no derivations.

Auxiliaryequationswere usedto computesomemodel inputfrom

rawinputquantities.Forinstance,theinitialverticalvelocityofthe

exhaustcloudwas computedfromthe followingequation:

: wo = V sin ,,. (2-34)

; A series of auxiliary equations were employed to arrive at the heat
• '.:

source para_ter A:

_o
p= RTT_ (2-35)

_ 0 = F*O'Cp (2-36)

A = --q---. (2-37)
_pCp

Diffusion parameter k was comput_ as a linear function of wind speed :

k = al u + a2. (2-38)

Based on Prfestley's estimates (1956) aI and a2 were set at 0.0204 and

0.004 respectively, u ts an averaged value of ail wind speeds observed

i! tn the layer where exhaust cloud rise and growth take place.

_ 30
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The spreading coefficient c was computed simply as an averaged

v_lue of the ratio of R(z)/z at all levels in the layer of interest. It

could be a function of wind speed u, as suggested by Priestley (1956) and

discussed in Section 2.2.2.1.1. Finally, the stability term was computed

in the following way:

;"e _'e(j+l) - "e(j)
,z- z(j_]) z(j) (2-39)

where again j is the height index. In the actual computation an averaged

value of :,%/;z for the layer of interest was used.

2.2.4 Computational Procedures

The procedures for model computations of exhaust cloud rise and

growth are outlined in the following flow di- -am.

!setconstants and counters I
i

ReadinputdataA,C,k,wo, zo, e" :'"e/'zl"r _ __

[Computez ! (Equation (2-3Q))]
_ p

:. :" I ................... ' rr

'_ IC°mputew, ,' during first phase and wI, "i (Equations (2-20) and (2-21)

"' under neutral stratification, Equation (2-22)

• , under non-neutral stratification)

l

I Compute w and o' during second phase and zm i(Equations (2-25), (2-26) and (2-27) or (2-28))

_...been processed? Ng.> - .....

_..

,_ Figure 2-5 Flow diagram for computations of exhaust cloud rise and growth

i
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2.2.5 Results of Hodel Computations

14odelcomputationswere carried out for twelve static engine

tests for which film observationdata of exhaust cloud rise and growth

were available. For each of the twelve cases, the model predicts the

following: (1) maximum height of cloud rise, (2) rise rate or vertical

velocity of cloud as a function of height or time after its initial

formation, and (3) temperature excess of cloud as a function of height

or time. Growth rate of cloud is not predicted ep_er_se;rather, the

linear variation of its lateral extenc with height during the first

phase is a derived property of the nlo_elas discussed previously in

Section 2.2.2.2. Growth of the cloud during the second phase is not

treated in the present model formulations.

Results of model computations were compared with observed data

of cloud rise. It should be pointed out however, that ur,certainties

• _ about observed cloud rise existed in four out of the twelve cases pro-

cessed for various reasons. For example, there were three cases where

2 no reference point could be found on the early frames oe the film.

Observation was uncertain for another case (TWF 033) where the cloud

was behind a tower for at least part of the observation period.

Table 2-8 tabulates the input data for all twelve cases for

which model calculationswere carried out. Note that model constants

such as g, z and t are not listed in the table. In the actual com-

putetlons, g had a value of 980 c_ sec -2, z ranged from 20 to 1600 meters

(with a vertical spacing of 20 meters), and t ranged from 0 to 200 seconds.

>

.?
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Table 2-8 Inputdat_ for twelvecases of exhaustcloudriseand
growthto be predictedby a physical-numericalmodel

Case iTest Firing Duration Model Input(Engine& Exhaust
, No. Date Time of Gas Data)

i (CST) Firing A(sec) Wo Zo
i (m sec-1) (m) (lO14cm3°K sec-1)
I

TWF026 2 719/64 1619 23 1404 20 0.4575

_F 027 3 7/10164 1654 50 1404 20 0.4576J

TWF031 5 8/4/6_ 1124 20 1404 20 0.4568

TWF033 6 8/25/64 1706 66 1404 20 0.4587

"I'WF034 9 10/9/64 1621 24 1404 20 0.4609

"! TWF035 10 10/10/64 i 1429 132 1404 20 0.4610

TWF037 11 10/23164 I 1640 119 1404 20 0.4609
TWF 050 12 2118/65i 1639 48 1404 20 0.4612

' TWF052 13 3/1/65 i 1414 60 1404 20 0.4626
L

.i S-IC05 17 516165 i 1510 15.6 488 30 0.4579 I

S-IC06 18 5/20/65I 1200 40.6 488 30 0.4580

• TWF056 19 5/26/65 1400 40 1404 20 0.4572 i
• ;

Continued

t

I
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Table 2-8 Input data for twelve cases of exhaust cloud rise and growth
to be predicted by a _ sical-numerical model - Continued

Case ll_t. Raw Input (Engineand Exhaust Gas Data)

I_V _ z* F* Cp ...... 0"_'"
(ftsec-I) (degree) (ft) (lbmin-I (cal gm-I (°K)

engine-l) oK-l)

IWF 02611 2 9365 30 159 3 x lO5 0.49 1769

TWF 0271 3 9365 30 159 3 x 105 0.49 1769

TWF 03111 5 9365 30 159 3 x lO5 0.49 1766

TWF033jl 6 9365 30 159 3 x 105 0.49 1773
I

TWF0341 9 9365 30 159 3 x lO5 0.49 ]782
• ) I

TWF0351 ]0 9365 30 159 i, 3 x lO5 0.49 1782
TWF037 ll 9365 30 159 _ 3 x lO5 0.49 ]782

'; i

' TWF050 12 9365 30 159 : 3 x lO5 0.49 ]783

• TWF052 13 9365 30 159 3 x 105 0.49 1789

S-IC 05J 17 9365 ]0 232 3 x lO5 0.49 1770
)

S-IC 06118 9365 lO 232 3 x lO5 0.49 1771

/ TWF0561 19 9365 30 ]59 3 x 105 i 0.49 1768
1

• Continued

l

4

' 36
. J

.-¢

6

i

1970026539-057



Table 2-8 Inputdata for twelvecases of exhaustcloud riseand growth
to be predictedby a physical-nu,nericalmodel - Continued

!

Case iTest Raw Input (Engineand ExhaustGas Data_)_i No.
I

P Tgas Mo R*
(Ib/in2) (°K) (gmmol-l) (ergmol-l°K-l)

TWF 026 2 14.7 2080 23.7 8.3144x 107

TWF 027 3 14.7 2080 23.7 8.3144x lO7

TWF 031 5 14.7 2080 23.7 8.3144x 107
I

I

TWF 033 6 14.7 2080 23.7 8.3144x 10/

TWF 034 9 14.7 2080 23.7 B.3144x 107i
TWF 035 10 14.7 2080 23.7 8.3144x 10/

:' TWF 037 11 14.7 2080 23.7 8.3144x 107

_ TWF 050 12 14.7 2080 23.7 8.3144x 107

; T_- 052 13 14.7 2080 23.7 8.3144x 107
C

S-IC 05 17 14.7 2080 23.7 8.3144x 107

: 107S-IC 06 18 14.7 2080 23.7 8.3144 x

TWF 056 19 14.7 2080 23.7 8.3144x 107

._ Continued
¢
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Table 2-8 Input data for twelve cases of exhaust clnud rise Jnd growth
to be predicted by a physical-numericalmodel - Continued

Case Test

No. Model Input (Atm. Data/

k c" • .J,')z

(sec -1 ) (-) (°K/km)

TWF 026 2 0.1462 0.6254 _.84

TWF 027 3 0.0963 0.6154 1.17

_F 031 5 0.0830 0.5525 2.31

TWF 033 6 0.0552 0.6398 6.98

TWF 034 9 0.II09 0.6702 1.56

TWF 035 10 0.I010 0.6646 1.99

TWF 037 11 0.1561 0.6676 3.56

" TWF050 12 0.0776 O. 5310 3.73

TWF052 13 0.1041 0.6634 6.17

S-IC 05 17 0.0878 0.6588 -0.63
.-

S-IC 06 18 0.0765 0.8069 1.16

TWF 056 19 0.1173 0.5085 -I.03
i
L

; Continued
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Table 2-8 Inputdata for twelvecasesof exhaustcloudrise and growth
;' to be predictedby a physical-numericalmodel - Concluded

Case Test Model Input Raw Input
No. (Arm.Data) (Atm.Data)

(oKJ " {.msec-1)

TklF026 2 300.I 7.4

TWF 027 3 299.8 4.9

TWF 031 5 303.l 4.3

: o4 I
' TWF033 6 295.5 2. g

i

- " "P_F034 9 286.9 5.6

: TIfF035 10 286.6 5.2

: TWF037 11 287.1 7.8

•.;i TWF 050 12 286.1 4.0

":, TWF052 13 280.4 5.3

S-IC05 17 298.5 4.5

S-IC06 18 298.1 3.9

'; TWF 056 19 301.3 5.9
:....o |

/I
"--- -- '" " -- - = "--I m m
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2.2.5.1 Computed Maximum Heights of C!ouJ Ri_e

Maximum heights of cloud rise for all twelve cases under neutral

and non-neutral thermal stratification conditions were computed wlth the

prediction model described in Section 2.2.2. The computed maximum heights

under neutral conditionswhen thermal stability effects were neg;ected in

the model and the observed maximum heights derived from film data are tabu-

lated in Table 2-9.

In Table 2-9, columns one and two identify the test numbers and

C: cases, column three lists the computed maximum height (zm) with stability

: effects neglected for each case, column four gives the observed height.._

•_._ (zm) corrected for cloud movements away or toward the camera, column five

- :" records the actual difference between the computed and observed maximum
t

--. :: height for each case, and column six presents the percentage difference

between the computed and observed maximum heights for each case. Note that

there are three test numbers bearing an asterisk (*). These are the cases

" where the observed data were not corrected for cloud movements.
. "_.

-: The averaged difference and averaged percentage difference in

• -i_. absolute values between the computed and observed maximum height for all

• ._ twelve cases and for ten of the twelve cases (excludingTests 5 and 6) were

- :_ also computed and they are listed in Table 2-9.
z

Some observations on the comparisons between the computed and

observed maximum heights of cloud rise can now be made. First of all, for

the types of heat source strength employed, the computed maximum heights

: seem to fall into a range of reasonable values; the lowest predicted height

i being B66 meters and the highest being 1513 meters. Secondly, for a majority
(.

•._, of the cases processed (seven out of the total twelve cases) the percentage

"C " j
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Table 2-9 Comparisons between the computed and observed maximum heights
of cloud rise for twelve cases (Thermal stability effects

"" not include_ in the computed heights. Observed heights are
corrected for cloud movements away or toward the camera.)

zm (meters) zm' (meters)'"(observed
Test (computedmax. height, maximum height Zm - Zm' (Zm - Zm')/Zm'
No. Case neutral conditions) correcte_!) (meters) (%)

2 T_JF026 898 798 lO0 12.47
3 TWF 027 1,120 1 ,lO0 20 1.86
5 TWF 031 1,225 587 638 I08.66

6 TWF 033 1,513 736 777 I05.60
9 TWF 034 1,036 821 215 26.13

*l0 TWF 035 l ,089 1,0lO 79 7.79

II TWF 037 866 926 - 60 - 6.50
• *12 TWF 050 1,281 1,050 231 22.03

*13 TWF 052 1,072 1,160 - 88 - 7.56

i 17 S-IC 05 919 1,264 -335 -26.74
18 S-IC 06 960 1,105 -145 -13.16
19 TWF 056 1,022 1,039 - 17 - 1.61

*Observed maximum heights not corrected for cloud movements.

. Averaged difference between the computed and observed maximum height for
. twelve cases
; l

lZm-Zml_.... 225 meters
: 12

°.:: Averaged difference betweetlthe computed and observedmaxim_a height for ten
"_ cases (excludingTests 5 and 6)

" z [zm - zm'i_ = 129 meters
_ I0

Averaged percentage difference between the computed and observed maximum
height for twelve cases

I

Zm -
>: j Zm ]112 = 28.34%

Zm_

Averaged percentage difference between the computed and observed maximum

i. height for ten cases (excludingTests 5 and 6)

_ I , m I/lO = 12.59%
• •.+,. zm

. .,+-_
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in absolute values between the computedand observed maximumheights is

:" no greaterthan 13.16percent(from1.86percentfor Test 3 to -13.16per-

centfor Test 18). For the remainingfive cases,threehavepercentage

differenceslessthan 27 percent(22.03percentfor Test 12, 26.13percent

for Test9 and 26.74percentfor Test 17) and two of ti_emllavedifferences

fromI05.60percent(Test6) to I08.66percent(Test5). Thirdly,for one

of tiletwo cases (Test6) where the percentagedifferencesbetweenthe pre-
_..

dictedand observedheightsare the greatest,the observationwas sommvhat

uncertainbecausethe cloudwas behindthe tower for at leastpartof the

observationperiod. For the other case (Test5) which has a oerc_ntage

differenceof 108.66percent,the staticfiringlastedfor only20 seconds.

This durationof firingis veryshort as comparedwith thatof 132 secondsi-

.,. for caselO, which has the longestfiringtimeamongall the casesprocessed._

_: The extremelyshortdurationof firingmighthave adverselyaffectedthe

_: theoreticalpredictionfor Test 5 becausethe modelwill yield the best
"_,

•;_ predictionof cloudrisewhen the heat sourceis maintainedlong enoughto

•_'; be consideredcontinuous. F;nally,it is observedthat the computedheights

F are greaterthan thoseobservedin sevenout of twelvecasesand smaller

Œthe remainingfivecases. However,there is very littleevidenceto" "C.j_

indicatea systematicbiason the part of the model to overestimatethe

heightof the cloud rise.

It has beenpointedout that thereare two cases (Tests5 and 6)

where the differencesbetweenthe computedand observedheightsare unusually

L':- large (638 and 777 meters respectively). Attempts were made to explain the
;-

. rather small maximumheights observed and the unusually large differences

between the computedand observed maximumheights of cloud rise. In order

42
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• ;?"

=, to avoid bias which was possibly built-in to two cases of unusual circum-

" stances, two sets of average dlfferences betweop the computed and observed

maximum heights were calculated. While the first takes all twelve cases

into account, the second excludes Tests 5 and 6 in the computation. Clearly,

the differences between the two sets of averages are substantial. With all

twelve cases being considered, the averaged difference between the computed

and observed is 225 meters, and the averaged percentage difference is 28.34
i-"

,: percent (the signs of the differences are disregarded). However, when Tests

5 and 6 are excluded in computing the averages, the averaged difference and

:" averaged percentage difference are reduced to 129 meters and 12.59 percent

respectively.

-: Table 2-10 presents comparisons between the computed maximum heights

" ": of cloud rise under non-neutral conditions (thermal stability effects included
-.:_

in the model) and the observed maximum cloud heights. In addition to the six
.'_.

;, columns listed in Table 2-9, tv_)columns covering the mean values of diffu-
i.

:t-
_. sion parameters and thermal stability for each case are included in Table 2-I0
-
;" for reference.

Interestingcomparisons can be made between Table 2-9 and Table

-:': 2-I0. The contrast is clearly demonstrated: When the stability effects are

.'-_ included, the averaged differences between the computed and observed maxim_._

heights are 171 meters (twelve cases) and ll6 meters (ten cases), as opposed

to 225 meters (twelve cases) and 129 meters (ten cases) in Table 2-9 ; the

averaged percentage differences are 20.76 percent vs. 28.34 percent (twelve

$,. cases) and I1.06 percent vs. 12.59 percent (ten cases).

-,
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Table 2-10 Comparisonsbetween the computedand observed maximumheights
of cloud rise for twelve cases (Thermal stability effects

: included in the computedheights. Observedheights are cor-
rected for cloud movementsaway or toward the camera.)

zm (meters) zm' (meters)(Observed
Test (computed maximumheight,Zm- Zm' (Zm-Zm')/ _ a°e/_Z
No. Case max. height) corrected) (meters) Zm'(%) i(sec-l) (CK/km)

2 TWF 026 895 798 97 12.16 0.1462 2.84
3 TWF 027 1,037 I,I00 - 63 - 5.73 0.0963 1.17
5 TWF 031 1,085 587 498 84.84 0.0830 2.31

6 TWF 033 1,124 736 388 52.72 0.0552 6.98
g TWF 034 995 821 174 21.19 O.I109 l.56

.: *I0 TWF 035 1,027 1,010 17 1.68 O.lOlO l.g9

: 11 TWF037 869 926 - 57 - 6.16 0.1561 3.56
: "12 TWF 050 1,110 1,050 60 5.71 0.0776 3.73

*13 TWF 052 l,029 1,160 -131 -II.29 O.1041 6.17

:_ 17 S-IC 05 909 1,254 -345 -27.51 0.0878 -0.63
18 S-IC06 932 1,105 -173 -15.66 0.0766 1.16

; lg TWF056 993 1,039 - 46 - 4.43 0.1173 -1.03

:" *Observedmaximumheightsnot correctedfor cloudmovements.

: Averageddifferencebetweenthe computedand observedmaximumheightfor
twelvecases

;

Z IZm" --=m'i = Ill meters

....._ Averageddifferencebetweenthe computedand observedmaximumheightfor ten
>; _:, cases(excludingTests5 and 6)

I:IZm - Zm'I = ll6 meters
: lO

Averagedpercentagedifferencebetweenthe computedand observedmaxi_._m
heightfor twelvecases

Izm',Zm'l/lZ = 20.76%
Zm

Averaged percentage difference between the computedand observed maximum
height for ten cases (excluding Tests 5 and 6)

• IZmz:,Z'lno=11.06%
m

"" "
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Furthercommentson comparingthe computationalresultsin Table

2-I0witllthose in Table 2-9 can be made as follows: (1) The net effect

of stabilityon the predictedmaximumheightis most obviouswhen the

stabilityfactor(_) is substantialand k is relativelysmall. This

is clearlyillustratedin Test 6 where ]_e/_Zis 6.g8*K/kmand k is oniy

0.0552(lightwind)and where considerationof stabilityreducesthe dif-

ferencebetweenthe computedand observedmaximumheightsfrom 777 meters

to 388 meters,a reductionof 50 percent. (2) In general,stableconditions

(_e/_-O) tendto reducethe maximumheightsand unstableconditions

(_e/_Z<O)have the oppositeeffect. (3) After the stabilityhas been
C.

taken intoaccount•the predictedheightis now greaterthanthe observed

in six casesand lessthanthe observedin the other six cases. It appears

thatthe model•with or withoutthermalstabilityeffects•had no bias to

overestimateor underestimatethe maximumheightof cloudrise.

_ 2.2.5.2 ComputedRiseRate and TemperatureExcessof Cloud

;. Riserate (or verticalvelocity)and temperatureexcessof exhaust

:_ cloud,as a functionof heightor time afterthe initialformationof the

cloud•were computedwith the predictionmodel for all twelvecases.

_ The predictedprofilesof rise rate (w) and temperatureexcess (o')

:_ for one case (TWF056,Test Ig) are presentedin Fig. 2-6. In Fig.2-6

the solidline representsthe predictedverticalprofileof w under

neutralconditions,whereasthe dashedline is the observed. The computed

temperatureexcess(e')is plottedalong the solid line. The transition

• levelzI is computedat 48g metersabovethe ground. It is interestingto
_._

note thatduringthe firstphase the predictedw d_creasesrapidlywith._. •

: heightduringthe earlystageand then lessensits paceof decreaseas the

45
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transitionlevel is beingapproached.After the transitionlevelhas been

reached,however,w resumesits rapiddecreasein magnitudeand eventually

becomesnegligibleat the heightof I022meters,which is the computedmax-

imumheightreachedby the exhaustcloud in this case. Incidentally,this

computedmaximumheightcomparesvery favorablywith the observedmaximum

heightof I039meters. The predictedtemperatureexcess,indicatedby the

numbersin parenthesesin Fig.2-6, decreasesrapidlywith height.

The observedriserateor verticalvelocityof the exhaustcloud

alsoexperiencedrapiddecreasein the earlystageof cloud ascent. By the

- time the cloud reached the height of about 115 meters, its rise . had

already been reduced to about 15 m sec-l, a muchlower value than the corn-

:; puted200 m sec-I at the sameheight. However,the rise ratefluctuated

• in a narrowrangefromthenon. By the timethe cloudreachedits observed

maximumheightat I039meters,it was stillexperiencingappreciablever-

_, tical velocity.

" No comparisonbetweenthe predictedand observedtemperatureexcess

> of the exhaustcloudwas made becausethe temperatureexcessof the cloudwas

:_ not observed. However,it is interestingto observethatwhen the cloud

reachedits computedmaximumheight,temperatureexcessof the cloudwas pre-

dictedto be O.IO°Konly;an indicationthat the cloudhad becomeenviron-

mentallystablein theory.

2.2.5.3 Sensitivit_fof Heightsof CloudRise Predictionto Some Input

Variables

Sensitivityof maximumheight (Zm) and transition height (z 1) of

cloud rise prediction to someinput variables, both of engine and exhaust

) gas and of atmospheric categories, was investigated using Test 19 as a
t'
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study case. The basic values of engine and atmospr,eric input variables used

in the study were as follows: wo = 1404 m sec-I, zo 20 m, A = 0.4568 x 1014

cm3 oK sec-I, -k= 0.1184, c= l.O, me/_Z = 0.0 °K km-l, and ,,e= 304.3 °K.

Sensitivity of heights of cloud rise to a certain input variable was studied

by varying the variable in question within a reasonable range of values, while

holding all other input variables constant.

2.2.5.3.1 Effects of Initial Vertical Velocity of Clnu.d(_Wo)___gr,P redictedd

Heei_gh_,t___of Cl)ud Rise

; w values ranging from 600 to 50,000 m sec -lo .;,ereu;ed in model

computations to evaluate the effects of w o_ predicU,d neigtL; ,f c:.,_ud
; 0

rise. Til_result5 are t_l_t"_'_":- ,. ";-7. it i_,eviJent from Fiq /-7

'. that both maximui:,i.:.,ight."z ) and transit!oF... ,,ht.,_,'-") of cl(,u(Jri ," Ill i

vary rapidly and .J:oportionallyto initial vert 'L. v_:_,ocit,' "', of the
sll,

clcud. This is to be expected because momentum ..:;:.ctrepresented by w0
C

plays a signific "_art in the plume rise, espy_-:,. ,y during the first

: (jet) phase of cloud rise.

2.2.5.3.2 Effects_ 9.F_.Diffusion Parameter _(k._ =r "_dicted Heiqhts of

?. Cloud Rise
.j

_ A wide-ranged value of k ,losu _: .,,the ccse study to assess the
l

_-:;. impact of k on zI and zm while the other input variables were again held

constant. The results shown in Fig. 2-_ indicate that both z 1 and zm

increasewith the decreased value of k. For example, when k = 0.001, the

computed z 1 and zm are 6553 and 8604 meters respectively. However, wheh

k = 1.0, z1 and zm have decreased to 168 and 335 meters respectively.

_: Although values of diffusion narameter k have no direct effects

on the first phase (jetphase)of cloud rise, they help determine the

#
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Figure 2J7 Variation of nexi_m height and transition height of exhaust cloud as
a function of lnttial vertical veloctty wo, Test No. 19, Case TMF056,
26 Hay 1965.
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:; transition height (z l) through Equation (2-30). During the second phase,

vertical velocity (w) of the c, oud decreases exponentially with k as indi-

cated in Equation (2-25), thus affecting maximumheight of cloud rise

through either Equation (2-27) or Equation (2-28).

2.2.5.3.3 Effects of Height of Heat Source (zo) on Predicted Heights of
Cloud Rise

Figure 2-9 shows the variations of transition height (z l) and

maximumheight (zm) as a function of zo, the height of heat source. It

is evident that both z1 and zm are sensitive to change in zo. For example,

• whenzo = lO m, the computedzm is about 740 m. Whenzo is increased to

"" 50 meters,zm is computedto be about 1540meters. It is interestingto

- note thatzo doesnot affectzm directlyin Equation(2-27}or (2-28),but
-. -._

C--_ that it exertsinfluenceon zm indirectlythroughvariablessuch as wI and

. ";_ o1.' IIoklever,the effectsof zo and zI are direct,as can be seen in
.:.

Equation(2-30).

"." 2.2.5.3.4 Effectsof Heat SourceParameter(A) on PredictedHeiqhtsofl

_ CloudRise
.-.;=

"5 Effectsuf heat sourceparameter(A)on predictedheightsof

_ cloudrise are givenin Table2-II. From thistable,it can be seenthat
,-(

:- both zI ar,d zm vary onlyslightlywithA, at leastfor Test 19 for which

the sensitivitystudywas made.

2.2.5,3.5 Effectsof Spreadin(].Coefficient(c) on PredictedHeiqhtsof

Cloud Rise

_ Vcriationsof maximumheightand transitionheightas a function

_c of spreadingcoefficient(c) rangingfrom0.5 to lO.Oare tabulatedin
_r

Table2-I2.
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Table2-II Variation_of maximumheight(Zm)and transitionheight(zI)
of exhaustcloud as a functionof heat sourceparameter,A,

Test No. 19, Case TWF056

A (cm3 °K sec-l) zI (meters) zm (meters)

0.9136 x lO_ 487.7 975.9

1.8272x lO13 487.7 978.2

2.7408x !O13 488.2 980.4

: 3.6544x It)13 488.6 982.7
t

4.5680 x lO13 489.0 985.0
X
: 5.4816x 1013 489.4 987.2
". i
2

i.

.'=

Table 2-12 Variationsof maximumheight(Zm)and transitionheigh_(zl)
of exhaustcloudas a functionof spreadingcoefficient,c,

,_ Test No. 19, Case TWF 056

c zI (meters) zm (meters)".½
• I

•_= 0.5 495 1018

• "_

_ l. 0 489 985

_ 2.0 488 976

- 3.O 488 975
_t
c.

_: 5.0 488 974

10.0 488 974

It is clearfromTable 2-12 thatboth zI and zm are ratherinse,_-

sitiveto changesin c, at least for Test 19.

,. 2.2.6 Summaryof TheoreticalStudy

•_% In the theoreticalstudy,a physical-numericalmodel simulating
"_'_

i_ rocketengineexhaustcloud riseand growthwas derived. The model was
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_ usedto predictthemaximumheightof cloud risefor t;-_Ivecases,for

whichobservedcloudrisedatawere available. Comparisonsbetweenthe

computedand observedmaximumheightsshowedthat the model is usefulfor

predictionof exhaustcloudrise.

Thereare severaladvantagesfor usingthismodel. First,this

model simulatesmostof the significantphysicalprocessesinvolvedin the

riseand growthof exhaustclouds. Therefore,it has beenconstructedon

: a soundphysicalbasis. Second,althoughthe simulatedprocessesand the

-: differentialequationsdescribingthem are rathercomplexand intricate,
",-T

the solutionsto the equationsare mostlyin algebraicformand can be

.: easilyobtained. In fact,the solutionsare so straightforwardthata
T"

::" computerprogramdesignedto obtainthe solutionscan be easilyhandledby

" ,.5\ thosewho are in needof the simulationdata but _re not necessarilyfamiliar

with the complicatedprocessesinvolved.Third,the model formulationsare
-.
• t

• .'-'. very generalin nature,applyingto all t;,pesof buoyantcloudsand various

-_ atmosphericconditions.The generalnatureof themodel augmentsits utility•C-

and usefulness.Finally,in viewof the lack of observationdata on engine

' _: exhaustcloudrise,the theoreticalmodel seemsto offera betterchoice

,: over empiricalpredictionschemesderivedon the basisof statisticalanal-

_, yses of observationdata. It is true thatthe validityand usefulnessof

both theoreticaland empiricalschemesare subjectto verificationagainst

more observationdatato be accumulatedin the future. The chancesare,

however,thatempiricalschemeswill undergofrequentrevisionsand modifi-

"i

:_. cationsin form as more observationdata are beingacquiredin the future.

_,:. A soundlyconstructedtheoreticalmodel,on the other hand,will staymore

• ;_ or less in its basicform, regardlessof the futurestateof observations

avaifable.
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It shouldbe pointedout that engineexhaustclouddata are

_ ratherlimitedat the presenttime. For instance,for the twelvecases

studiedtherewere only two groupsof engineand exhaustges datawith

differentinltialverticalvelocityand heightof heat source. The heat

sourcestrength,representedby the parameterA, variedonly slightlyfrom

case to case. More datawithwide-rangedvaluesfor engineand exhaustgas

parametersare neededin the futureto continuethe testof the model.

" The potentialof usinathe theoreticalmodel for predictionof

hot plumerise fromindustrialstacksis worth exploring. A recentsurvey

showedthattherewere no lessthanthirtydifferentstack plume risefor-

-. mulasavailable(BriggsIg6g). However,among these,the empiricalformulas• .,-

_ usuallyapplyonlyto the observationdatabasedon which the formulaswere

.._:-_ derived;the theoreticallyderivedformulas,on the other hand, are often
.:"

over-simplifiedso that they fail to accountfor most of the important
4.
.'_*_ physicalprocessesand atmosphericconditions.The plume riseformulas

•:_
_ containedin thismodel althoughequallysimplein form,takemost of the
.._ , .

-._: physicaland atmosphericprocessesinto account. It is recommendedthat
".4

.:;_ theseformulasbe testedin stackplume risecomputations.

2.3 MultivariateStatisticalAna.1},sis
4";

•_ .2.3.1GeneralBackground

A stepwiselinearregressiontechniquewas employedto develop

statisticalrelationshipsbetweenvariousdependentand independentvari-

ables involvedin exhaustcloud riseand growth. Basedon the regr,s-ion

. analysis,predictiveequationsfor cloudrise and growthparametersof

_ interestwere derived. Three typesof datat._reused in the statistical

:_. analysis: (l) filmobservationsof exhaustcloud riseand growth,

"_._ (2) vehtcle engine data, and (3) observed55meteorological conditions.
........ - ...... --_ mi
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2.3.2 SteI_viseLinearRegressionTechnique

2.3.2.1 The Dependentand IndependentVariables

This regressiontechniquewas usedto relatedependentvariables

to independentvariablesinvolvedin two phasesof cloudriseand growth.

Figure2-1O illustratesthe two phases: phase 1 is the layer fromthe

heightof the launchingpad (zo) to the transitionheight(zl) withinwhich

jet effectsare dominant,and phase2 is the layerfrom the transitionheight

to the maximumheightof the cloud(Zm).

maximumheight (zm)

' phase 2
phases
l & 2 transitionheight(zl)

phase l
.. ,..,

i launchingpad height (zo)
4

Figure2-I0 Two phasesof exhaustcloudrise and growth

The dependentand independentvariablesused in the regression

analysisare tabulatedand describedin Table2-13. It can be seen that

withineach layer (phaseI, phase2 and phase i plus phase2) there are four

-' dependentvariablesand a totalof elevenindependentvariables,eightof which

are meteorologicalin typeand threerocketengineparameters.

2.3.2.2 Descriptionof the Technique

A briefdescriptionof the stepwiselinearregressiontechnique

will now be given. For this techniquea stipulatedvariable(e.g.,rise

rate)calledthe predictandis the objectof estimation. The variables

usedto make the estimationof the predictandare termedpredictors.The

numberof plausiblepredictorsthat couldbe usedto estimateriserate is

56
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Table 2-13Descriptionof dependentvariablesand independentvariables
:,. used in the regressionanalysis

DependentVariables Description Units

Phasel

zI _heightof the top of phase l layer•or transi- m
tion height

dZl/dt rateof changein zI with time m/sec

Al averagearea of the cloud m2

dAl/dt rateof changein averagecloudareawith time m2/sec

_ Phase 2

z2 depthof phase 2 layer•equal to Zm-Zl m

:: dz2/dt rateof changein z2 with time m/sec
" A2 averagearea of the cloud m2

dA2/dt rateof changein averagecloud areawith time m2/sec

._ Phase1 PlusPhase 2

•... zm depthof the totallayer;i.e.,maximumheight m
_! of cloud

,_ dZm/dt rateof changein zm with time m/sec•";- 2
.. A* averageareaof the cloud m

..:. dA*/dt rate of changein averagecloudareawith time m2/sec

_ (meteorological) Phase 1 2 and Phase 1 Plus Phase 2

T average temperature in the layer °K

": u averagewind speed in the layer m/sec

-:i. RH laveragerelativehumidityin the layer %

•i dT/dz Irateof changein temperaturewith °K/m
)

Iheight
ia:;:aog;pressurein the layer mb

Jp/dz i' changein pressurewith height mb/m

du/dz Irateof chanqein wind speedwith l/sec

helght
,averagedensityin the layer gm/cm3

;., (vehicleengine)
._;:.
_. TH enginethrust Ib

ili D durationof firing
sec

_." F fuel ratio --

K 57
_-'
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ratherlarge. It is well known fromstatisticalthoo_ that the larger

the numberof predictors,the greaterthe "shrinkagein accuracyof esti-

mation"when the procedureis appliedto actualdata. This situation

imposesthe practicalnecessityof selectinga manageablenumberof pre-

dictors. The stepwiseregressiontechniquemakes d preferentialselection

of effectivepredictorsfroma largeset of possiblechoices. Experiments

comparingperformanceon independentdata of estimationfunctionsusing

largenumbersof predictorswith those usingselectivelychosensubsetsof

suchvariableshave shown,as a rule,thatwhateverestimationaccuracy

residesin the largeset is almostwhollycontainedin the much smallersub-

set. The objectiveselectionof such a small subsetis termeda stepwise

procedure. After the procedurehas been applied,the redundantot noncon-

.; trollingpredictorsare eliminatedfromsubsequentanalyses,and a multipleo,

- regressionequationis developedusing onlythe selectedpredictors.

v In multipleregression,the predlctand,Q, is expressedas a..

' linearfunctionof a number(P)of predictorvariables:

t

) Q = A0 +AIX l + A2X2 + ...+ApXp
•':;

)_-F where the coefficientsAp(p=O,l,...,P)are determinedby leastsquares.

To selectthe firstpredictor,the simplelinearcorrelationis computed

betweenthe predictandand eachpredictor. Next, partialcorrelations

betweeneach of the remainingpredictorsand the predictand(holdingthe

firstselectedpredictorconstant)are examinedand the predictora._so_iated

with the best partialcoefficientis then selectedas a sec...Jpredictor.

Additionalpredictorsare selectedin a similarmanner. Selectionis halted

;.. on the basis of an F-test criterion.

-!
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2.3.2.3 Resultsof RegressionAnalysis
i

The stepwiseregressiontechniquewas carriedout for cloudrise

data bothuncorrectedand correctedfor cloudmovementsawayor towardsthe

camera. Table2-14 showsthe correlationcoefficientsfor both datasets

betweenthe fourdependentvariablesfor each phaseand the elevenindependent

variables. Notethat thereare two numbersin each box. The firstnumber

is the correlationcoefficientappliedto the uncorrectedcloudrisedata,

while the secondnumberis thatfor the correcteddata. Also note that the

two numbersin each box are generallyin close agreement.

Tables2-15 through2-18presentsome resultsfrom the stepwise

techniquefor both data setsand show the orderof selectionof each inde-

pendentvariableand the correspondingreductionin variancefor each phase

:" and eachdependentvariable. Again notethat analysisresultsfor correctedI;

and uncorrecteddatasets are verysimilar.

It shouldbe pointedout that the stepwiseregressiontechnique

requiresa "stoppingrule"so thatnot all variableswill ultimatelybeJ

• selected. The stoppingrulestatesthat variableswill continuallybe

;; selectedand reductionin variancecomputeduntilthe levelof significance

_: determinedby the "F ratio"dropsbelow go percent. Computedresultsin

" Tables2-15 through2-18 showthat in a11 casesthe variableTH (thrust)

was selected. Furthermore,Table 2-14shows that in most cases :i- ,-_rre-

lationcoefficientfor thisvariableis quitehigh (especlqalyin :he rates

of changein heightand area}. Thus,for an orderof magnitudeit.prediction

_.: of ratechangeof heightand area,knowledgeof thrustseemsto be indispens-
:;-

_ able.
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Table 2-15 Stepwise regression results, height

Corrected Data

DependentVari abl e

zI z2 zm
Order Reduction JReduction Reduction

of Variable in VariableJ in Variable in
Selection Selected Variance Selected Variance Selected Variance

1 dp/dz 0.67 dT/dz 0.47 p 0.81

2 RH 0.80 p 0.74 T 0.89

" 3 I _- 0.87 TH 0.85 TH 0.93

z ] 4 TH 0.90 D 0.97
.:_, .................. I. I

Uncorrected Data

.. DependentVariable

: ___I z2 z'" ._ _. 11

. _ Order Reduction Reduction Reduction
.. .{ of Variable in Variable in Variable it;

: SelectionlSelectedVariance Selected Variance Selected Variance
• _

T-. -_ 1 dp/dz 0.67 dT/dz 0.49 1 p 0.81
:_ 2 R-H 0.81 TH 0.81 I TH 0.90

•- 3 p 0.89 p 0.92 ( dT/dz 0.95;= :? .... ! ......

-, , vs

I[.

I
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7, Table 2-16 Stepwise regression results, change in height

' Corrected Data ,

Dependent Variable

I
I dZl/dt dz2/dt dzm/dt

Order i Reduction Reduction Reduction
of I Variable in Variable in Variable in

Selection I Selected Variance Selected Variance Selected Variance

l i TH 0.95 TH 0.85 TH 0.85!

2 ! dT/dz 0.97 p 0.95 c 0.97

3 1 du/dz 0.97 du/dz 0.99
........... |

Uncorrected Data

Dependent Vari able

. dZl/dt dz2/dt dZm/dt

•.: Order Reduction Reduction Reductior;

_ of Variable in Variable in Variable in :
• Selection Selected Variance Selected Variance Selected Variance J

4
l TH 0.95 TH 0.87 TH n.85

2 dT/dz 0.97 " 0.96 _ n.96 I; L I

• 3 du/dz du/dz 0.98
• . . . .

-i

Y

:"_ _ 63

= .
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Table 2-17 Stepwtse regression nesults, area

Corrected Data

DependentVari able
• .... • - __ iL .....

A1 I A2 A*-4 .... • -- - -| ' " ' -

Order Reduction Reducti on Reduction
of Varlable in Variable in Variable in

Selection Selected Variance Selected Variance Selected Variance
., _ _ ± | , . . _ , _ __._ _ • _ 4 _ _ _| -- '

1 TH 0.63 TH 0.59 TH 0.54

2 dp/dz 0.82 D 0.81 D 0.81

3 dT/dz 0.91 p 0.93 p 0.95
• L ,m , __ _ L 110 L m IF .... = / _ J , , m

Uncorrected Data

Dependent Vart able

": A1 A2 A*

'. _. Order Reduction_ Reduction Reduction
: _ of Variable in Variable in Variable in
; Selection Selected Variance Selected Variance selected Variance
:" u _ _ , L _J _ _ • ..... _ J ,

• " 1 TH 0.60 TH 0.68 TH 0.63• {_

• - ": 2 dp/dz 0.80 D 0.84 D 0.83

3 dT/dz 0_8 p 0.93 p 0.95
. :..
• -...

, ¢

.,

• f

.° ... •_

:|
m
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Table 2-18 Stepwiseregressionresults,rateof changein area
.-.
J

CorrectedData

Dependent Variable

_i/dt dA2/.dt (

Order ReductiopI )Reduction _ JReduction
of Variable in J VariableI in _VariableJ in

Selection, Selected,. Variance j Selected j........ Variance lse.!ectedIVarimnce
: 1 TH 0.97 TH 0.91 TH 0 -93

_ 2 R-H 0.98 p 0.94 _ 0.96

•: 3 D 0.97

• Uncorrected Data

DependentVariable

::" dAl/dt dA2/dt dA*Idt

.5- Order Reduction Reduction Reduction
_ of Variable in Variable in Variable in
::: Selection Selected Variance Selected Variance SelectedVariance

• -2

•? l TH 0.98 TH 0.94 TH 0.94

_i 2 p 0.97

• ._:

;

, 65 I_
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• 2.3..3 Regression Equations

- 2.3.3.1 Thrust-DominantRegression Equations

Based on the results of the regression analysis presented earlier

(Section 2.3.2.3), a series of regression equations relating time rates of

change in heights and area with engine thrust was derived. Tables 2-19

through 2-24 list these thrust-dominant regression equations and correspond-

ing residuals computed for ten cases. It appears that a fairly good predic-

tion of time rates of change in heights and area can be achieved using the

: derived regression equations.

2.3.3.2 Regression Equations Dominated by Meteorological Variables
..

: It may be recalled from Table 2-6 that there are only three values

:_ of thrust for all ten cases considered: TH = 1,504,000 Ibs. for seven cases,

TH = 1,600,000 Ibs. for one case, and TH = 7,500,000 Ibs. for the remaining

-.. -_.

. two cases. Consequently, the eight cases where TH had a value ranging

. from 1,504,000 to 1,600,000 Ibs. were used to derive regression equations

. relating dependent variables to independent variables that were meteorolog-

": ical in nature.

C Table 2-25 shows the correlation coefficients :or both data sets
)"

between the four dependent variables for the total (phase l plus phase 2)

_ layer and the eight meteoreIogical variables. Again, there is gererally

= little difference between the coefficients derived for corrected ind uncor-

rected data. Tables 2-26 and 2-27 list the results of the stepwise technique

for parameters in various layers and show the order of selection of each inde-

pendent variable and the corresponding reduction in variance. The "stopping

,: rule" was the same as that used for developing thrust-dominantregression
i:

. _ equations.

•:
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Table 2-19Phase I - dzlldt(m sec -I)

dzildt= 3.2 x IO-4(TH)+ 18.0

Tableof Residuals

Residuals
Case Actual Predicted (Actual-Predicted)

TWF034 21.5 22.8 - 1.3

TWF033 23.8 22.8 1.0

TWF031 23.3 22.8 O.5

TWF056 24.8 22.8 2.0

TWF037 19.5 22.8 - 3.3

TWF027 23.3 22.8 O.5

TWF026 22.3 22.8 - O.5

No. 23 24.4 23.1 1.3

SIC05 39.6 42.1 - 2.5

SIC06 44.5 42.1 2.4

Table 2-20 Phase2 - dz2/dt(m sec-1)

dz2/dt= 3.1 x I_-4(TH)+ 7.1

Table of Residuals I
..... -- ............... I

Residuals J

Case Actual Predicted 1 (Actual -Predicted) .'TWF034 6.4 11.7 -5.3 1"I'WF033 14.0 11.7 2.3 i
• I

TWF031 II .8 11.7 [ 0.I J
!

TWF056 17.0 II.7 5.3 J
)

TWF037 7.4 11.7 ! -4.3 j
TWF027 13.9 II 7 i 2.2 m" ., i

i
TWF026 II.9 11.7 i 0.2

NO. 23 12.0 12.1 -O.1

; SICO5 33.0 30.4 i 2.6

i sco6 27.8 3o4 i -2.6 i

; 67 "

),
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-l)- Table2-21 Phase1 plus phase 2 - dZmldt(m sec

. dZm/dt= 3,1 x IO'4(TH)+ 8,9

Tableof Residuals

Residuals
Case Actual Predicted (Actual-Predicted)

TWF034 8.4 13,4 -5.0

TWF033 15,0 13.4 l,6

TWF031 I 15,8 13,4 2.4
..: TWF056 I 18,2 13,4 4,8

: TWF037 I 8,2 13,4 -5.2

TWF027 1 15,1 13.4 1,7
-- TWF026 i 14,0 13,4 0,6

I..- No. 23 13,5 13,7 -0.2

•_.. SIC05 33,8 31,7 l,I

SIC06 29,8 31,7 -1,9
.. _._

_'i Table 2-22Phase I - dA1/d'L (m2 sec -1)

.:_._; dAl/dt = 9.9 x 10-2(TH) + 6.54 x 102"._.._

_ Table of Residuals
",I.

-.. Residuals
= -" Case Actual Predicted (Actual-Predicted)

...... ................
_" TWF034 2045 2138 -93

-'.._ TWF033 1707 2138 -431

.: TWF031 1270 2138 -868

TWF056 2319 2138 281

TWF037 2320 2138 182

TWF027 2948 2138 810

TWF026 2227 2138 89

-:" No, 23 2370 2233 137

_" SIC05 8106 8059 47• ,_L .

"'_: SIC06 8010 8059 -49

1970026539-092



: Table 2-23Phase2 - dA2/dt (m2 sec -I)

•:': dA2/dt= ].4 x IO-3(TH)+ 7.51x ]02

Table of Residuals

Residuals
Case Actual Predicted (Actual-Predicted)

l_WF034 1534 2862 -I328

TWF033 3003 2862 141

TWF031 1594 2862 -I268

TWF056 4631 2862 1769
7-

• TWF037 3104 2862 242

:: .TW.F027 4256 2862 t 1394
-:.

•" TWF026 2414 2862 -448

" NO. 23 2488 2996 -508

•; SIC05 10330 I1270 -940

SlC06 12220 I1270 950

Table 2-24Phasel plusphase 2 - dA*/dt (m2 sec -l)

_ dA*/dt = 1.2 x IO-3(TH) + 9.65 x lO2
-.-¢,

:!, Tableof Residuals
•?-i .................
:, Re_--iduals
" (A d).- Case Actual Predicted ctua1-Predicte

..._: ................. _ ..........
i TWF034 1571 2918 -I347_..
:_{ TWF033 3311 2918 393

TWF031 1926 2918 -992

TWF056 4266 2918 1348

TWF037 3055 2918 137

TWF02/ 4095 2918 l1ll

TWF026 2429 2918 -489

v No. 23 2818 3043 -225

_ SIC05 10300 10700 -400

)'. SIC06 llllO lO/O0 410
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Table 2-26 Relationships derived using regression analysis based on the
corrected data set showing order of selection and reduction
in variance, height

Height

DependentVariable

zI z2 zm

Order Reduction Reduction Reduction
of Variable in Variable in iVariable in

Selection Selected Variance Selected Variance iSelectedVariance

1 dp/dz 0.66 dT/dz 0.62 idu/dz 0.28
2 R-H 0.81 u 0.59

3 p 0.93 T 0.70

4 u 0.99 dp/dz 0.90
5 T 0.99

Rateof Changein Height

DependentVariable

dz./dt dz2/dt dZm/dt

I i ...........
Order Reduction Reduction Reduction

l of Variable in Variable in Variable inSelection Selected Variance Selected Variance Selected Variance

_ 1 r; 0.74 n 0.82
2 du/dz 0.88 du/dz 0.90

3 R--H 0.96 dT/dz 0.98

4 dT/dz 0.99

o,

,4

71

%'r.

m--
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Table 2-27 Relationships derived using regression analysis based on the
corrected data set showing order of selection and reduction
tn variance, area

Area
!
!

DependentVariable

A1 A2 A*

Order Reduction Reduction Reduction
of Variable _n VaHable in Variablel tn

Selection Selected Variance Selected Variance Selected Variance
___, • m m _1 L, = -: - - m L _ •

1 dp/dz 0.50 No Significant u 0.52

2 dT/dz 0.76 Relationships dT/dz 0.68

3 dp/dz 0.88

Change in Area
, ,, ..... J . _ L,, • •

Dependent Variable

dA1/dt dA2/dt dA*/dt

Order Reduction Reduction Reduction
of Variable tn Variable in Variable tn

Selection Selected Variance Selected Variance Selected Variance

.• 1 No Significant ) 0.52 _ 0.52
" Relationships

I

; Basedon the results of analysis, predictive equations relating

dependent variables with independent _artables of a meteorological nature

were derived. The predictive equations and corresponding residuals com-

puted for all eight cases are tabulated in Tables 2-28 through 2-37. The

actual values of dependent variables used in residual computations are

observed cloud data corrected for cloud movementsaway or toward the camera.

t
y

)

F

_• 72
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Table 2-28 Predictive equation with corresponding table of residuals for
dependent variable z1 (m)

zl = -3.05 x lO3 dp/dz + 1.78 x lO4 _- 5.65 x 10]
-7.54 x 10-] u + 2.12 x 102 T- 6.67 x 104

Table of Residuals

Case Actual Predi cted Residual
.... , .... , - ,,

TWF026 201 206 -5

TWF027 210 217 -7

TWF031 303 279 24

TWF033 119 158 -39

TWF034 151 123 28

TgF037 137 157 -20

TWFO56 222 231 -9

No. 23 i71 141 -30

Table2-29 Predictiveequationwith correspondingtableof resldualsf:

dependentvariablez2 (m)

z2 -- -3.39 x 104 u'T/dz + 3.87 x 102

" Table of Residuals

Case Actual Predicted Residual
, , J • ,, l,

: TWF026 597 651 -54

• TWF027 890 668 222

TWF031 284 600 -316

TWF033 617 491 126

TWF034 670 709 -39

TMF037 789 685 104

TWF056 817 739 78

Ho. 23 601 719 -118

4"

¢
73
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• Table 2-30 Predictive equation with corresponding table of residuals for
dependetltvariable zm (m)

: zm = 2.71 x 105 dp/dz + 1.76 x 102 u"- 4.61 x 104 du/dz
-1.23 x 102 T + 6.59 x 104

Table of Residuals

I Case Actual J Predi cted Resi dual
t

 Fo26 798 I 12,o27 11oo loss 45
!

- TWF03I 587 638 -51

• TWF033 736 721 !5

TWF034 821 904 -83

TWF037 926 887 39

.'-" TWF056 1039 1061 -22 =

i!o. 23 772 724 48
-.

" Table 2-31 Predictive equation with correspon61ingtable of residuals for
dependent variable dZl/dt (m sac-')

:' dZl/dt= -2.55x 10-1 p"+ 2.75x 102_

: Table of Residuals
L , . ,t

" Case Actual J Predicted Residual
i

- TWF026 22.3 23.9 -1.6

_: TWF027 23.3 23.4 -0.1=

"_ TWF031 23.3 23.2 O.l

:;; TWF033 23.8 22.5 1.3

TWF034 21.5 22.0 -0.5

TWF037 19.5 22.8 -3.3

TWF056 24.8 24.7 0.1

No. 23 24.4 22.3 2.1

¢

.j-

: :E
• _3

• ,_, 74
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Table 2-32 Predictiveequationwith correspondingtableof residualsfor
dependentvariabledz_/dt (m sec -i)

2 _+ 2 + -2--dz2/dt = -3.,9 x lO p 2.50 x 10 du/dz 1.78 x 10 RH
-2.15 x 102 dT/dz + 1.17 x l O2

Tableof Residuals

Case " Actual Predicted Residual

TWF026 11.9 12.6 -0.7

TWF027 13.9 13.6 0.3

TWF031 11.8 15.1 -3.3

TgF033 14.0 11.9 2.1

TWF034 6.4 8.1 -1.7

TWF037 7.4 7.4 0

TWF056 17.0 15.1 1, 9

No. 23 12.0 10.6 1.4

Table 2-33 Predictive equation with corresponding table of residuals for
dependent variable dZm/dt (m sec -1)

" dZm/dt = -40 p + 95.9 du/dz + 19.7 dT/dz + 13,5
"E ................

Table of Residuals
J .... , , , , ,L - -

Case Actual Predicted j Residual

TWF026 14.0 15.7 -I.7

TWF027 15.1 15.1 0

TWF031 15.8 17.2 -1,4

; TWF033 15.0 13.6 l,4

TWF034 8.4 9.0 -0.6

TWF037 8.2 8.7 -[;5

TWF056 18.2 16.5 i. 7

No. 23 13.5 12.2 1.3

_.i"
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Table 2-34 Predictiveequationwith correspondingtableof residualsfor

dependentvariableAl (m2)

Al = 4.63 x lO5 dp/dz - 3.73x lO5 dT/dz+ 5 96 x lO4

Table of Residuals

Case Actual Predicted Residual

TWF026 I0022 9363 659

TWF027 13265 I1927 1338

TWF031 16510 14485 2025

TWF033 4269 7228 -2959

TWF034 7157 8402 -1245

. TWF037 8120 6075 2045

; TWF056 10436 13418 -2982

No. 23 8261 7137 I124

._-

: Table2-35 Predictiveequationwith,correspondingtableof residualsfor
-_ dependentvariableA* (mz)

A* = -_.13x lO4 E- 7.72 x 106 dT/dz+ 5.53 x lO6 dp/dz

• , 105- -_ + tZ.81 x

Table of Residuals

Case Actual Predicted Residual

....: TWF026 74095 99729 -24634

TWF027 149475 _)696 58779
t

TWF031 35640 92123 -56483

TWF033 78355 52486 25869

TWF034 76205 71151 5054

TWF037 17265 37897 -20632

TWF056 121600 103108 18492

No. 23 70470 75910 -5440

(

,¢

: 76

"_
"_" IE

• . ..°

..
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Table 2-36 Predictiveequationwith correspondingtableof residualsfor
_ dependentvariable '_p/dt(m2 sec-1)

2_+ 5
dA21dt= -1.37x I0 p 1.31x lO

Table of Residuals

Case Actual Predicted Residual

TWF026 2414 3271 -857

TWF027 4256 3079 l176

TWF031 1594 2847 -I 253

" TWF033 3003 2628 375

,=. TWF034 1534 2737 -1203
'- TWF037 3104 2080 1024

TWF056 4631 3696 935

" No. 23 2488 2682 -194

"v Table2-37 Predictiveequationwith correspondingtableof residualsfor
dependentvariabledA*/dt(mz sec-l)

_: 101 p" 104•_ dA*/dt= -9.28x + 9.05 x
"._

• _- .
• -9.

Table of Residuals

-_; Case Actual Predicted Residual

_ TWF026 2429 3228 -799

�TWF0274095 3089 1006
'}_

• _ TWF03I 1926 2940 -1014
_,

TWF033 33]1 2764 547

TWF034 1571 2801 -1230

TWF037 3055 2347 708

TWF056 4266 3506 760

No. 23 2818 2792 26

._.
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2.3.3.3 Corrected and Uncorrected Data

" Two sets of cloud observation data were available for use in the

multivariate regression analysis. One set consisted of those data uncor-

rected for cloud movementsaway or toward the camerawhile the other set

included those data for which such corrections had been made. An analysis

was then carried out to see whether different regression equations should

be derived for corRcted and uncorrected data.
-o

The first step of the analysis was to compute a series of standard

deviations for the dependent parameters. Take, for the present time, zmC

i: for example. A series of standard deviations was computedas follows: _A'

:,: the standard deviation for corrected Zm; oB, the standard deviation for

._: uncorrectedZm; and oD, the standarddeviationfor the differencebetween

_: correctedand uncorrectedzm. The computedstandarddeviations for all ten

•_ cases are listedin the firsthalfof Table 2-38. The computationalresults

_ showthat thereis onlya slightdifferencebetweenoA (206)and oB (195),

: and that_D (37.6)is muchsmallerthan either°A or "_B"This indicates

• c that statisticallythere is very littledifferencebetweenthe corrected

• _ _ and uncorrectedzm, at leastfor the ten casesanalyzed.

The same analysiswas carriedout for dZm/dt,the time rateof

changeof zm. The computedstandarddeviationsare listedin the second

halfof Table2-38. The computationalresultsagainshow that there is

littledifferencebetweenoA (8.3)and oB (8.2),and that_D (0.49)is much

smallerthaneitheroA or oB. Again,the indicationis thatstatistically

there is onlya slightdifferencebetweenthe correctedand uncorrected

data of dZm/dt. This analysiswas laterextendedto cover all other

;? dependentvariablesas well. Resultsshow invariablythat statistically

...._ there is very littledifferencebetweenthe correctedand uncorrecteddata.
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Table 2-38 Computed standard deviations for both uncorrected and corrected

=. data and their difference for zm and dZm/dt

zm (m) "11
Case Corrocted Uncorrected Difference Corrected Uncorrected Difference

-- _ _ ....... = _ : . = = :=. = • .... ,

_F034 82_ 743 78 8.4" 7.6I 0.8TWFOaa;,36 ;,17 19 ls.o 14.6 o.4
TWFOalSS;' S63 24 lS.a lS.2 0.6
TWF056 1039 974 65 18.2 17.0 1.2

TWF037 926 827 99 8.2 7.3 0.9
L

TWF027 llO0 1037 63 15.1 14.0 l.l

TWF026 /98 799 -l 14.0 13.I 0.9

No. 23 772 786 -14 13.5 13.8 -0.3

5IC05 1254 I197 57 53.8 32.3 l.5

-.} SIC06 ll05 1098 7 29.8 29.4 0.4
-._

: _tandard CA 206 _B = 195 oD = 37.6 oA = 8.3 _B = 8.2 iOD = 0.49•*. )eviation =

.;

• \

Conclusions drawn from the preceding analysis, that there is little

..: difference statisticallybetween the corrected and uncorrected data of cloud
• ._

. parameters, were supported by comparisons of correlation coefficients tabu-

lated in Table 2-14. It may be recalled that for each pair of dependent

and independent variables, the correlation coefficients computed for cor-

rected and uncorrected data were generally in close agreement. Consequently,

regression equations w._redeveloped for and verified against corrected data

only.

. _,

•
,,.@
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2.3.4 Su_unaryof MultivariateStatisticalAnalysis

• Muit]variateregressionanalysiswas carriedout to correlate

the dependentvariablessuchas observedcloudheightsand areasand their

time ratesof changewith the independentvariablessuch as vehicleengine

parametersand meteorologicalvariables.

Two types of regressionequationswere derived: (1) thrust-

dominatedregressionequations,and (2) regressionequationsdominatedby

meteorologicalvariables. Both typ_sof equationswere employedto yield

predictionsof cloudparameters.The predictedcloudparameterswere then

comparedwith those actuallyobz fred. Resultsof the comparisonsare

representedby the residualvaluesbet_ecr, -.predictedand the observed

parameterscomputedfor all casesavailablefromobservations.
r

Resultsof the comparisonsshow that,generallyspeakin§,cloud

_ heightsand theirratesof changewith timecan be adequatelypredictedwith

) eithertype of regressionequationand predictionsof cloudareasand their

. rates of changew_th time are less satisfactory. However, it should be recog-
,z

nized that the numberof data samples available to the analysis was limited,

- and thatthe derivationof regressionequationswas basedon a limitednumber

of data samplesonly.

2.4 Conclusionsand Recommendations

2.4.1 Summ.a.ry

In Section2.1, a new and uniquebody of dataon hot plume rise

has beenevolved,basedon informationgeneratedby the GeorgeC. Marshall

SpaceFlightCenterin the courseof its testfiringsof large rocket

_- engines. Sinceother informationin the fieldof hot plume risecharac-

terizesplumerises from industrialstackswith relativelylow temperatures

C"

", ._t
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and velocities,thesedata are uniquein this fieldbecausethey represent

•; ut,usuallyhigh valuesof exhausttemperatureand exit velocity. Whilethe

datahave beenemployedextensivelyin the presentstudy (boththe theoret-

icaland the empiricalstudies),theirpotentialhas by no means been

exhausted,and investigatorsstudyingplumebehaviorfrom any sourcenow

haveavailableand shoulduse this fundof information.

2.4.2 TheoreticalTreatment

: The theorydevelopedin Section2.2 representsan expansionof

conceptsbeyondthatpreviouslyconsideredfor hot plume risefrom indus-

trialstacksin orderto allow for the extremesof exit velocityand temper-

atureinvolvedin the basicexperimentaldata. As a result,the theoryis

;: applicablenot onlyto thiscase, but also representsa more powerfular,

. explicittreatmentof the stack case and shouldbe givenattentionin that

: field.

2.4.3 StatisticalTreatment

_ The empiricaltreatmentdescribedin Section2.3 was undertaken,
V

: bothas an exploratorymove to seek out significantparametricdepe;_dencies

implicitin the dataand to provideinsurancethat predictivemethodologies,

of somesort,could be generatedin the event thatthe theoreticaldevelop-

mentwas unableto adequatelydescribethis unusualcase. Since,however,

the theoreticaldevelopmentwas so successful,the statisticaltreatment

has thus assumeda secondaryrole contributingprimarilyin the veinof

identificationof the significantparametersand providingpredictionsof

some of the dependentvariablesto which the theoryhas not yet been

).;; applied.
-,r"

i
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2.4.4 Conclusions

:.: From the Task I study, it is concluded that:

• A new body of hot plume rise data has been generated which
extends into the realm of high temperatures and velocities
not heretofore available;

• theoretical developmentshave been evolved which extend the
capabilityof previoustheoreticaland empiricalmodelsfor
hot plume risefrom industrialstacksto cover the high
velocitiesand temperaturesof rocketengineexhaustsand
also strengthenthe stack'spredictivecapability;and

: • empiricalstatisticalanalyseshave beencarriedout which
•" have identifiedsignificantcontrollingparametersin the
: hot plumerise.

2.4.5 Recon_nendations

::" • That the theoreticaldevelopmentbe employedas the predicted
modelfor the rise and growthof hot plumesfrom rocketengine

:. exhausts,bothfor the predictione_.se, and for application
. into diffusion and deposition expressions, as required for

future rocket fuel program planning;
C"

• that this model be madeavailable for use by the scientific
; communityconcerned with hot plume rise from industrial stacks
._.: (primarily air pollution meteorologists) as a significant
::T improvementin the state-of-the-art;

_:i • thatdetailedmeteorologicaldata (suchas wind, temperature,
, pressure,etc.)for the layerwithinwhich exhaustcloudrise
).6 takes p'acebe used in futuremodel calculations(heretofore,

; valuesof meteorologicalparametersaveragedfor the layerof
• , c_oua risenave been used);

t-

!_- • that more observation data on exhaust cloud rise be accumu-
• fated in the future,and thatobserveddatawith wider ranges

of engineand exhaustgas parameters,and data on water injec-
tiononto the flamedeflectorbe usedto verifyboththe theoret-
icaland empiricalexpressionsfor exhaustcloud riseprediction;

• that considerationbe given to the incorporationof the effects
of sprayedwater on the exhaustcloudrise into the theoretical
model as a further refinement; and

, • that the new body of plume rise data generated from the MSFC
test firings and presented in this report also be made_vatl-

.: able to the scientific community concerned with developme_t
• ;.' and validation of hot plume rise models.
• .._

._"

-_,
}

....... _ _.- _,,j ,,,_. ,J lUI
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3.0 TASK I] - DEBRISFALLBACKAND FALLOUTMODEL FOR THE KSC LAUNCHAREA

3.1 Introduction

Task II of this contractaddressesitselfto the developmentof

a computerizedmodel describingthe dispersionof materialoriginatingfrom

n(.tna]or abnormaloperationsin the layerboundedfrom 5-30 km.

The developmentof modelsfor atmosphericfal]backand fallout

is dependentuponthe degreeto which the atmosphericstructur_ may be

resolved. In the past,suchmodelswere basedupon relativelylow resolu-

tionmeasurementtechniques.As the state-of-the-artadvances,more sophis-

ticatedmeasurementtechniquesbecome i!ableand the existingmodels

becomeoutdated. The developmentof the FPS-16Radar-Jimspheresystem,now

in use at the KSC complex,is such a technique. The modificationand/or

.. developmentof new predictivemodelsto match the advancesof the measure-

' ment technologyis dependentuponthe realneed for hi§'er resolutionmodels.

; The developmentof more powerfulfuels,which are of a toxic nature,for use

" in NASA'spropulsionsystemshas providedthe need for the developmentof

!, more refinedpredictivemodels. Of particularinterest,is the dispersion

"_ of materialafteran abortat some point in the atmosphere.

i The rsmainderof Section3.0 is dividedinto threemajor parts:

: model formulation,programming,and documentation.The sectionon model

formulationpresentsthe equationsused in the modelwith documentationon

theirorigin,meaning,and Justification.The ProgrammingGuide includes

a descriptionof how the GEOMETformulationwas incorporatedwith the

k existing0-5 km program*an4 providesstep by step instructionsfor use. The

_ section on documentation of the program includes a description of required in

puts and their calculation and program use

-_ " Developedby GCAfor the Marshall Space Flight Center under Contracts

.................... =_ "_: "llwlmll " ' -- ]
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3.2 Formulation of MoJels

The task of formulation has been broken down into component parts,

each of which correspond to a definite physical situation. These parts, in

turn, have been classified under the headings of diffusion models or depo-

sition models according to their nature. A diffusion model involves the

prediction of nonsettling material, while a deposition model predicts the

ground pattern resulting from the settling nf material which can be assigned

a terminal velocity. The diffusion formulation involves the consideration

of environmental problems such as effects of wind speed and directional

shears on diffusion, transitions from oi-_emeteorological regime to another

and the effects of washout, as well as source problems such as the effect

of a missile's trajectory on subsequent diffusion and the effects of source

decay as a function of time. The deposition formulation considers the same

source problems and selected environmental problems. There is, however,
i

one fundamental difference in the formulations. The diffusion formulation

permits the investigationof the outputs as a function of time from release

while the deposition models do not have this option.

3.2.1 Diffusion Models

Before discussing individualmodels and their origins, it is

necessary to set up a preliminary framework. This involves the defini-

tion of the basic quantities w,.ichthe diffusion models predict, the

system of notation used, the definition of relevant coordinate systems,

and the exp'_anationof the model structure and the inputs necessary to

define this structure.

; The diffusion problem amounts to the prediction nf concentration

. and dosage fields resulting from a source characterized by a known strength

• Q • • _ O

t

85
_a
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: ano geometry. The dimensionsof sourcestrengthare dependentupon the
.'._

source-geometryand are shownin Table3-I for futurereference.

Table 3-I Sourcestrengthdimensions

Desig- SourceStrength j SourceStrength

Geometry..nation..._..... Dimension . ,Notation I _- Un!ts

point P M Op gm

Iine L MIL QL gin/meter

area A MIL2 QA gmlmeter2

vol ume V MIL3 QV gmlmeter3

.: The concentrationfield is generallya functionof spatialand

-! timecoordinateswith the dimensionsof MIL3 and units*of gin/meter3. The

.?.,. notationfor concentrationis dependent upon the source-geometryand will

be denotedby the Greek letterChi (x) followedby an appropriatesource-

'_ geometrydesignationas a subscript(if no subscriptappearsthe equa-.;.-o
';_ tionholdsfor all geometries).Dosageis definedas the time integral

I.

'.,. cor,centration

;_T:;; O = o_ xdt (3-I)
"_.

•:" with dimensionsof MT/L3 and unitsof gm see/meter3 The samenotation._.'. °

systemwhich appliesto concentrationalsoappliesto dosage. If the upper

limit of integration in Eql_ation {3-1) is set to ®, the dosage obtained is

termedtotaldosage;if t<-.,the dosageobtainedis termedpartialdosage

_:. and is a functionof time.
"_-_ The structure of the model is based upon layers which are defined

by the thermalstratificationof the realatmosphere.The layerboundaries

_. *The units of mass in the model inputs are at the (,ption of the user.
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.I

are assumedto be total reflectorsof the diffusingmaterial,which corre-

::_ spondto the inversionsand stableregionsfound in the atmosphere.

Two coordinate systems have been used in developing the diffusion

models. The firstis a gridsystemin which a point is givenby (XG, YG"

ZG) with the positive XG direction being east, the positive YGdirection

beingnorthand withZG beingthe verticalcoordinateas definedby the

right-hand rule. The second is the standard meteorological system for dif-

" fusioncalculations,whichis definedindependentlyfor each layeri,_the

5-30 km region. In any layerof this region,the originof the systemis

given by the intersection of the vehicle's trajectory with the bottom boundary

:: of that layer. Since the wind is not restricted to be constant with height

: withina layer,the X (alongwind)directionis definedto be along the mean

wind in the layer,the Z (vertical)directioncorresponosto that used in the
.. c

-4

grid system,and the Y (lateral)directionis definedby the right-handrule.,_.

'_., The wind direction(FJk)and speed (Uk) at bothboundariesof a layerare

required as inputs and are used to calculate the _ean wind by taking a::

' vectoraverage. Thus, if the additionalsubscriptsT and B signifythe top

;". and boundaryrespectively,the meanwind speed (Uk)and direction(_k)are

gi yen by
¢,

?. U--k = 1 (kz2 + k22)I/.t (3-2)2"•

where

k1 = UkT sin (270-ekT) + UkB sin (270-ekB) (3-4)

_- and

k2 = UkT cos (270-ekT)+ UkB cos (270-ekB) (3-5)

• e_
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where kI and k2 are the componentsof the vectorsum on the Y$ and XG axis

respectively.Figure3-I illustratesthe relationshipof the meteorological

coordinatesystemof the kth layerto the gridsystem.

North Xk

YG Yk

East

xG
J

• Figure3-I The relationshipbetweenthe grid and meteorologicalcoordinate
: systems

" _: 3.2.1.I InclinedLlneModelsfor the kth Layer

-: 3.2.1.1. l Concentration and Dosage

c These models account for the effect of the vehicle's trajectory

• on the subseq.ent dosageand concentration fields within a specified layer.

= :. The modelfor the 0-5 km regionassumesthatthe vehicle'strajectoryis

-_ vertical. Roughdataon the plannedtrajectoriesof Apollomissionsindi-
iL

, . .=

•_ cate thatfor 0-5 km thisassumptionis justified;however,in terms of the

Y 5-30 km region,this assumptionbecomestenuous. At a heightof 30 km the

vehicleis on the order of 25 km downrange. Integrationof a pointsource

modelalong the trajectorywithin a layerwas used to obtainan analytical

solutionunderthe assumptionsthat the trajectorywithinthe layeris

•_ defined by a straight inclined line and that diffusion is a Gaussian process.

:- Figure 3-2 illustrates the vehicle trajectory with reference to the meteoro-

. _ logical coordinate system.

•,
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"..%

z

":".. HT ""'_ _/Rocket TrajectoryH = Depth of Layer ao "_" Exit Point (a,b,H)

_'_ i // Y

MeanWind / * "\ I z"

y EntryPoint _\_ I zl

"- X

i Figure3-2 Rockettrajectoryin kth layer

The trajectoryis definedby the rocket'sexit point fromthe kth

.¢-

._ Iayerand its equationis giyen by
?

• -

.._ Xl Yz Zl
- - (3-6)

- _ a b H

-; where the point (a,b,H)is the exit pointof the trajectoryfrom the layer

:_ in the meteorologicalsystem;H is, therefore,the thicknessof the layer.
./

= ..: The requiredintegrationis givenby
-.._

_oklxp
._- XL = de, (3-7)

where the upper limitof integrationis given by

k I = (a 2 + b2 + H2) I12 . (3-8)

-"".-_ 89
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..: Using the assumption that diffusion is Gaussian, we may express Xp as

Q, _._-_-x_._
exp 2-_ _xx -j

+ Y-_J-)_(vertical
Oy y term) (3-9)

where
t = timeof evaluation,

-:-. Qp = source strength,2

o ,o.,o_= standarddeviationsof cloudmaterialin the x,y and z
:.. x _, z direction (see Section 3.2.1.2 for formulation), and

•__ (x,y,z)= the coordinatesof the receptorpoint in the meteorological
.._-
-.-. syste_.

: The verticaltermis derivedfromthe assumptionmade abouttotal reflection

4. at the layerboundaries:
-:

...__... _/C_-.. -_- oo +Zl_ z 2

. .-_,., verticalterm= m=cZexp- _,_. _ )

...
" _ +exp-l_" _zz "I +exP-½. _ '" _ Z

. : .; 2(m+l)H+zz �h�2

)}
.4"

This expressionis obtainedby modelingeach reflectionby placinga virtual

point source on a vertical line through the original source. Four terns are

necessarybecauseof the asymmetrycausedby placingthe releasepointcloser

to on_ boundary. The secondand thirdterms describesubsequentreflections

, (offof the upper and lower boundaryrespectively)resultingfrom the first

[ reflection f,,_ the upper boundary. The first and fourth, te_ describe

.: -_' subsequent reflections (off of the upper and lower boundary respectively)

"" _

: _i
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resultingfrom the first reflectionfromthe lower boundary. Equation(3-10)

is a basicextensionof the verticalterngiven by Slade (1968,p,348)for

the cappinginversionand eliminatesthe requirementthat the bottomboundary

colncidewith the ground.

The integrationindicatedin (3-7)may be donewith respectto

eitherxz, YI" zz• or 9,_ince

62 = x_2 + yl 2 + z12. (3-11)

The heightof the pointsourcezI,was selectedas the variableof integra-

tion. EliminatingxI and Yl from (3-]I)by the use of (3-6)yields

: a2 b2
¢ = (_2-+_'2"+ l) 1/2 Z 1 (3-12)

=" and (3-7) becomes

• H

_ XL =_o xpedZl (3-13)

where

'=._ a2 b2
a = (_2"+_'_'+ 1) 1/2. (3-14)

The vertical tem (3-_0) may be _ritten more concisely by letting

W1 = -2n_i+z (3-15)

w2 = -wl (3-I6)

w3 = 2(m+l)H+z (3-17)

w_ = -w3 (3-18)

r. thus

.._:_ verticalterm= m=o_j=l_exp- • °z _ . (3-19)

91
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Placingthis in (3-13)yields

z }: exp - g _dzI (3-20)
m=o j=l _ oz I

where

a

n = _ (3-21)

b
and • = _. (3-22)

Removingconstanttermsand interchangingthe integraland summationyields

• - QL= x _ exp - ½
- -: XL (2_13/_OxOyOz m=o j=l [k'-_xI

where

:: x= x - Ukt. (3-24)

-:. The exponentis expandedin termsof zI resultingin a second

¢ degreepolynominal.Aftercompletingthe squareand removingconstants

from the integral we have

- QL= ): ._ xp - _.°xz
XL (2_)'312OxOyOz m=oj=l y z

f
:S:'

"" _

. _'i gz
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where

: A2= n2 o-_ 1
• _ + + _ (3-26)

X OZ

W.

_ ._ + Oz-_ . (3-27)B = OX-_+ Oy

By meansof the substitution

.= (z1A-_)2 -1/2. (3-28)

The integral in (3-25) may be expressed in teems of the error function:

t

oo I .__A._ W .2 A21_ QL_ [ T_ exp - g _ + EZ_L (2,)_J_OxOyOz.,=oj:1

•, [erf (HA2-B/ + er f B (3-29)X_A y

where

.: erf (x) 2 x _t 2= -- e dt. (3-30)

Equation (3-29) represents the formulation for an inclined line

extending completely through the kth layer. This equation may be simpli_"ied

by removinga factorof .4_-5_IAfrontthe infiniteseries,however,(3-29)

represents the manner in which the model was programmed with the infinite

seriesbeingevaluatedindependentlyof the _,uitiplicative factorinvolving

QL" Equation {3-29) represents diffusion from e normal launch through the

;. 1_yer.
}

; Abortivelaunchesaremodeledby superpositionof a linesource
• .'%

.._.- and a point source. In this case, the line may end anywhere in the kth layer,
&,e

J

• ".,_.

--- " .... _' _ Pql I !
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and Equation(3-29)must be modifiedto accountfor this. The upper limit

in Equation(3-23)is changedto Ha, the heightof the abortafterstabiliza-

tion (noconnectivemotionin cloud)relativeto the meteorologicalorigin

in the kth layer. Thus,

Ha < H (3-31)

and the firsterrorfunctionin (3-29)becomes

A2-

erfC_A_. (3-32)

The formulation fGr dosage corresponding to an inclined line source

is derived in a similar manner. A straightforward approach is to apply

: Equation (3-I):

t

_: DL --[ xL dt. (3-33)
"o

To obtain an analytic solution, integrals of the form,

• exp - (At + B)2 erf (c + Dt) dt (3-34)

-.

: must be evaluated. Since no analyticsolutionof (3-34)was knownto the

authors,anotherapproachwas used. This entailedrewriting(3-33)as

t H

DL =_o _o Xp_.dzldt. (3-35)

Since the variablesof integrationare independent,the order of integra-

tionmay be interchanged.In doingthis,we find

H

,'L DL =_o _Dp dzI. (3-36)

o-_..

• :_ 94
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By using the same methods as those mentioned pPeviously, Dp may be shown to be

- - - erf_- ---- .
Dp 2:'_y°zuk exp ½ Tj rf,_, v_-°x

" . (3-37%
._. exp - ';zm=oj=l

Even though the evaluaLion of (3-36) still involves integrals in

the form given in (3-34), some simplifying assumptions may now be made. If

we restrict ourselves to looking at total dosage, t_ and

x-u t-nz,)__ ( _t'L ; _1 (3-38)
•\ ,_o

X

_ + ',zl + u-kt (3-3g)and if x-:./2" x

• (X-Ukt-Uzl
th_.n erf -_,_ )- I. (3-40)

X

•: The eval:Jation of (3-36) is now straightforward and we find that

• DL= I Z }:. exp- _,z2_2+Oy2 /• ; [2_,:y_zUk m=o j=l

:. erf(IHF2.Gl_ [ G ])]Xt_-_-F1 erf _ (3-41)

where

F2 = l 2 1+ (3-421
y z

W.

2,
.°

%,.

_..

• _._.

g
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In the case of a verticalline throughthe layer Ca-o,b=o),the

restrictiongiven by (3-39)may be droppedbecausethe argumentof the error

functionis no longera functionof zI (n=O).For thisspecialcase, {3-36)

becomesDL* where

[x-u tI
X

This i,_dicates,and is confirmedby numericalresults,that Equation(3-41)

is too largeby a factorof two when x = ukt and greateramountswhen X<Ukt.

This suggeststhatbetterestimatesof dosagefor small valuesof x can be

obtainedby multiplying(3-41)by a factorsimilarto that foundin (3-44).

[ t z ]lv = .5 1 + erf . (3-45)

_ _ ox

The mean valuetheoremindicatesthatan appropriatefactoris

glvenby Equation(3-45),whereo<_zz<_H.For the purposeof testing,the

correction,z"I, was set equalto the heightof the receptor. Whilegiving

exact resultsfor n=o, in the more generalcase (n#o),the correctionfactor

gaveanomalousvaluesin certainspecialregionswhere the definitionfor

31 was apparentlynot consistentwith the geometryof the linesource.

Becauseof this, it was not possibleto incorporatethe correctionfactor

intothe operationalmodel. Equation(3-45),however,can be usedwith

variousestimatesof z_ to estimatethe e._rorin the dosage in regions

where Equation(3-39)is not satisfied.

The equations for the point source to be u_ed in conjunction

with the limited inclined source equations ha_e already been cited or

.:. derived. The equatio_;sfor concentrationand dosageare givenby (3-9)

and (3-37). The total concentrationand dosagefor an a[:,rtare givenby

• ,_ 96
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:'AT - 'L + Yp (3-46)
and

OAT= DL + Op. (3-47)

3.2.1.1;2 Source Strength

The variable __peedof the vehicle along its trajectory presents

the interesting problem of defining the source strength QL" If the engine

is operating in a steady-state mode, then QL is an inverse function of speea.

This is seen from

rn= dm_ dmde._
dt d£ dt constant (3-4g)

d_
where m is :he massflow rate, d't is the speed of the vehicle along its

dm
trajectory and _ = QL" In terms of input to the model, QL must be an

dm
average value of d-E over the entire layer; thus

: QL= g v-_ (3-50)

Trensformlng this to the vertical coordinates of the grid system, we have

f dz (3-51)QL=L zkt _
ZkB

" where v(z) is the velocity of the vehicle along its trajectory and Zkt and
-T

ZkBare the vertical positions of the top and batten of the kth layer respec-

tively. It is suggested that the user calculate values of 0L for each layer

by use of (3-51) (see Section 3.3.4).

3.2.1.1.3 OutputPara.eters

The outputparametersfor the precedingmodelsare concentration,

peakconcentration,and dosage. Peak concentrationis calculatedfromthe

_? modelfor concentrationat timetp, wiilchis calculatedinternallyby the

@: programand is givenby

g7
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tp = _--. {3-52)
uk

Physically,this is equivalentto sayingthatthe peak or maximumconcentra-

tionoccurswhen the centroidof the cloudis closestthe assessmentpoint.

Concentrationcan be calculatedat timesspecifiedby the user. All these

outputscan be calculatedat pointsin spacespecifiedby the user. For

detailedinstructionson inputs,outputs,and programoptions,the reader

i-: is referredto Sections3.3 and the ProgrammingGuide.

-. 3.2.1.2 The Calculationof ox, Oy and oz in Shear Flow

The effectsof velocityshearon diffusienwere firstnotedby

: Taylor(1953,1954)for both laminarand turbulentpipeflow. ;'_observed

an acceleratedrateof diffusionof materialin regionsof shearand showed

thatthe diffusivityneededto bringaboutthiseffect (termedeffective

_: diffusivity)was much greaterthan turbulentor moleculardiffusivities.

-X: Taylo,'estimatedthiseffectivedlffusivityby imposinga constantconcen-

'c trationgradientin the directionof the mean flow and by calculatingthe-=..

iT

_ resultingfluxof material. Aris (1956),a chemicalengineer,developed

' " anotherapproachfor the calculationof effectivediffusivitycalledthe
• i'):.

i; productmomentmethod. Saffman(1962)appliedthismethodto the prediction

i: of atmosphericdiffusionin shearflows. Hogstrom(1964)and Smith (1965),
._.

using statisticalmethods,have confirmedSaffman'sresults. More recently,

Tyldesleyand Wallington(1965),Gee (1967)and Csanady(1969)have used

thismethodto describethe effectsof shearflow on diffusion.

The concentrationmomentmethodis basedon redbcingthe diffusion

_/_T equationto a seriesof simplifieddifferentialequationsinvolvingthe

_.. momentsof the concentrationdistribution.Saffmanhas obtainedasymptotic

I/I
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solutions for both boundedand unboundedflows. Following Saffinan, the basic

results of this method are reviewed below. The momentsof the concentration

field are defined by

o (z xn,O (o>o.>o, (3-53)

and as the notation indicates, are functions of height and Lime. Differen-

tial equations involving these momentsare obtained from the diffusion

equation:

_X+Uk __,!L+Vk _x= _:X(kx,_X')+ ___y,.(ky_x' + _X(kz _x'at ax ;)y ax ;)x" ;)y ;)y) az az.) (3-54)

vith boundary conditions of

= o at z=o and H (3-55)az

and x_O as x_, y_ (3-56)

: with the assumptions that the eddy diffusivities kx, ky and kz are

: independent of x, y, and t, and that the meanwind is parallel to the ground

:_-:. and a functionof heightonly, The multiplicationof (3-54)by xnym and

-: integration over the xy plane results in differential equations for the

" momentsenm, If the concentrationis normalizedin such a way thatthe

sourcestrength within a layer is unity, it Follows that

_oH _F. C xdxdydz= 1. (3-57)

.. This allowsthe totalvarianceof the cloud in the x and y directionsto

.:.._:: be definedin termsof momentsfor the total cloud(ohm)as follows:

,'4

...... i i
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2
ox = e20 - elc 2 (3-58)

and

2 = e02 - e012 (3-59)Oy

where in general

°nm =/14 enmdz. (3-60)
"o

The differential equations for %0' el° and 020 can be found by

multiplying the diffusion equation by 1, x and x2 respectively and integrat-

. ing over the xy plane. Thisprocedurein conjunctionwith the boundary

: condition given by (3-55) results in
i"

aeoo
:- @eO0_ a (kz _..__zu) (3-61):: at az

- :. aelo _ a aelo_
,_ _)-'--'_-- UkOon- _ (kz _1 (3-62)

aO2o aO2o

" at 2Uk°lO= 2kx°oo+ @--'az(kz--_) (3-63)

with boundaryconditionsthat

:, aeno
a--z--= o, z = o, z -- H (n = O, l, 2). (3-64)

This systemof equationswith suitableinitialconditionsdetermines_x and

ay. The initial conditions for this system are determined when concentra-

tion is specifiedat time t=oc

T"

xl = f(x, y, z) (3-65)• " "_" =0

_-"

./-} loo
•"-, °v
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: where f(x,y, z) is a functiondescribingthe initialcharacterof the

:" source. From (3-65)and (3-53)it followsthat

I12
I = xn f(x,y, z) dxdy. (3-66)

eno
t=o

The secondstep in the analysisis the specificationof f(x,y, z).

In particular, this function must account for reflection from the layer

: boundariesand edgeeffectsif the sourceis a line. Sincethe systemof
¢."

. equationsis independentof x and y, the inclinationof the linesourcewith

respect to the vertical will not enter into the solution and the assumption

" of a verticallinesourcewill not reducethe generalityof the solution.

It is assumed, therefore, that the initial distribution of mass _thin the
2

:_ cloud is uniformlydistributedalonga verticalline. It then followsthat
.. ."

:_" f(x,y, z) is given by

" X,:. f(x,y, z) z z exp- + °YS._ m=o j=l

• :i; rf _---_- + erf I_2"-A, (3-67). OxsOysOzs
2:-:•. where

2.

:: Oxs standarddeviationof sourcealong x direction,

Oys = standard deviation of source along y direction,

Ozs = standarddeviationof sourcealongz direction,

A = 1/Ozs ,
W.

B = _L z, and
_'_ Ozs

..•..

, wj = see Equations(3-15)- (3-18).

• :;!"
f,

_.°

1970026539-130



.%.

".[.

The expansion of (3-67) results in the following equation for

: fix, y, z):

,(x.,.,.=,,. l[ j2_axsOysexp- ½ + Ly s (3-68)

which indicates that a vertical line source in a boundedlayer is theoret-

ically equivalent to an infinite line in an unbounded region. Using this

:- result, the initial conditions for the system of equations can be shownto

'_ be

:'.. %0 It=° = 1/H (3-69)

._ B101 = o (3-70)t=o
::.'- 2

•.=.. (:IXS

e2°I = "H"-- (3-71):_-. t:o

;': whereaxs2 is the initialvarianceof the cloudin the x direction• "_

_ -.:• The third and finalstepof the analysisis the solutionof the

._ systemof equationsfor the boundaryand initialconditionsderivedabove.

.._. The logical procedure is to begin with the lower _nts and work through

to the highermoments. For a constantkz = k and the use of the finite

cosinetransform,it followsthat

_ n2_2kt_ n_z
eo° _-HI+ n=IZuoo exp (- T/ cos -_- (3-72)

-': where B is the finitecosinetransformof %o I , i.e.,_"- O0 I_ t=o•

• )=_;

• _::.

1970026539-131



^ _°H I n'nz
%o = Boo cos y dz. (3-73)

t=o

Saffman suggests that for arbitrary initial conditions, %0

asymptotically approaches the solution given by

1 (3-74)eoo H

and is subject to the condition that

t >> H2/2k. (3-75)

The result given by (3-74) is easily verified by letting t approach infinity

: in Equation (3-72). The condition for asymptoticity stems from an analysis

of the value of the exponential term in the infinite series. While (3-75)

_ is a good rule of thumb• it is not applicable to the results of the present

analysis. This follows directly from the initial condition (3-69) and its

-. finite cosine transformation which is identically zero for all n greater
t

, thanzero. Placingthis resultin (3-72)yields

... :.. l (3-7E)• ,-, eoo=

wh.Jchis valid for all t greater than or equal to zero regardless of the

implications of Equation (3-75). This result, however• does not assure that

Saffman's asymptotic solutions to (3-62) and (3-63) are valid for small t.

During the term of the contract, considerable effcrt was put forth in an

attempt to find solutions for all t using methodsof the Laplace transform.

_*,:..:Whileworkablewith suitableassumptionsabout the variationof uk and vk

:,_; with height this method requires that the inverse transform of untabulated• {-", •

_'_: functions be found. In this case• use of the finite cosine transformation
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providesan easy and straightforwardsolutionfor the total cloudvariance.

The methodof solutionand major resultsare outlinedbelow:

I. Equation(3-62)is integratedoverthe diffusinglayerand

the resultingdifferentialequationis solvedfor Oiowhich resultsin
Hh"

01o = u-kt = Jn 01° dz (3-7l)
v

indicating that the centrold of the cloud moveswith meanvelocity of the

layer.

2. Equation(3-76)is substitutedin (3-62),kz* is assumedto

be independentof heightand the finitecosinetransformis applied. The

'• resultingordinaryfirst-orderdifferentialequationis solvedfor the tr_ns-

-_- form of Ozo (Fc(O10)),which resultsin

. Hz uk

.. Fc(BIO) = _ FC(_-_). (3-78)

" 3. The inversion formula for the finitecosinetransformis

_- appliedto Equation(3-78)yieldinga solutionfor e]o:
..-

" ukt 2 _. Fc(Uk) n_z
.::C.... elo = T + _Tz n=l n-'2" cos T" (3-79)

: 4. The variationof u is assumedto be linearwithinthe diffus-

"_ ing layer,i.e.,?

• .-_C uk = akz + I)k (3-80)
_..-

'_: so that =:kH2
"; Fc(U)- [cosn-.,-l]. (3-81)

5. Integration of (3-26) over the diffusing layer yields

de2o ._H. _ - 2; k ukelodz + 2bkUkt + 2kx • (3-82)
t

- * kz is assumedto be equal to l0 s and lO3 cn12/sec for the troposphere
:- and stratosphere respectively.

_.:-

. • 104

:_
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. The integralis easilyevaluatedby use of (3-79),(3-80)and (3-81)

: which resultsin

4k2H 1 +2 k kt+2kx (3-83)
dO2o

= aktHu,.+ _ (2n-l)bn=l

6. Equation{3-_) is solvedfor e2o and the infiniteseriesis

evaluatedin term of Bernoullinumbersby use of the identity:

83_6(26-l)
:. l_: : (3-84)

n=l T2-n_T 2.6;

:. where B3 is the thirdBernoullinumber. Thus,
^

• I akUkt2H a2H2t bUkt2 + 2kxt (3-_)
e20 = 020 + 2 + l')l .42 "kz +•. t=o

- fromwhich it follows that (seeEquation(3-58))
:.

"- ak2H2t

.: Ox2 = o20J + 171.42 kz + 2kxt" (3-B6)
•• I t=O

_- If vk = CkZ + d, then by analogywe have

:' Ck2H2t

:: °y2 = 0021 + 171.42kz + 2kyt- (3-87)
,. It=o

_ FromEquation (3-71) it follows that
c"

I 2 (3-88)
020 = OXS

t=o

and by analogythat

: 0o21 = Oys2. (3-89)._: t=o

Equations(3-86) and (3-87)providethe basis for the treatmentof the

•_. effects of wind shear on diffusion and have been derived in the meteorological
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coordinatesystem. Theseequationsmay be relatedto the gridsystemby

use of the following:
^

ak = UkT cos (ek - °kT)- UkB cos (°-k- °kB) (3-90)

and ck = UkT sin (°k - °kT)- UkB sin (e-k- °kB) (3-91)

where the notationis definedin Section3.2.1.

In practice,the term 2kxtmay be equatedto the varianceof a point

source (pOx2) by use of the k theory:

pox2 = 2kxt. (3-92)

In the operationalmodel the sum givenby

pox2 + Oxs2 (3-93)

has been replaced by a single virtual point source term given by

; 0 2 (3-94)
ay2= yr try j

where

• (3-95)
.. Xy = ry [°yrl

.: rx,ry,rz = referencedistances,

• Xx,Xy,Xz = virtualdistances,

Oxr,Oyr,Ozr= diffusionparameters,

,_ 2 _ 2 . 2 = sourcevarianceat timet=o, and
XS ' ys ""ZS

_,l_,y = power law exponents.

Analogoussubstitutionshavebeen made in Equation(3-87). Since

_:. verticalwind sheardoes not effectthe verticalvarianceof the cloud,'_z
_"

._:

is givenby

1o6
-_" .... - '"IRII i I
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_- Ix+Xz].
°Z °zr [---_---z J (3-96)

where

[Ozsil/
Xz = rz [ °-_rJ " (3-97)

The program requires inputs of °xs" °ys' _" and B in each layer

for both the line and point source formulation. The reference distances

and diffusion parameters are set within the program as follows:

rx = lO0 (3-98)

, ry = 20 (3-99)

r z = 20 (3-i00)

-, o r = 3.41 (3-101)
;: Y" y

: Oz,rz i.35 (3-102)

• 38.57 exp (-3.5878 _) .88 < B < .909
• = - - (3-103)" Ox,r

.( x |371.99 e,p (-4.0925 8) .851 _<B _<.._Y_.•%

!:: _ and _ are functions of atmospheric stability an_ ,,._,- :}e estimated frofn

i the following relationship

= B = .88- 1.08 dTd-_- (3-]04)

where

dT
d-'i= averagetemperaturegradientin degreescentigradefor

the kth iayer.

_.. In the case of the inclined line source,oz, s obviously cannot be

_" measured,but becauseof the mechanicsof the model it is ._tillneededas

i_ an input. The integrationphysicallycorrespondsto movinga point source

source ;x,s'°y,s and Oz,s along the and
with standarddeviations line
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I
) summingthe effectsof each pointsource. In the specialc_seof a eertical
I
m

' linesource,the formulationreducesto a set of equationswhich are independent

of °z,s" This,however,doesnot hold for the generalcase. Oz,sthenmust

be definedin termsof Ox,s and _y,s" T-..-_ughargumentsof symmetryone

would expect

°x,s _ °y,s" {3-105)

A suitabledefinitionwould thenbe

+ n S
- °x's Y' (3-106)

r_Z,S 2

" 3.2.1.3 The Effectsof Washoutand Decay

The effectsoF washoutand decayare modeledas an exponential

dampingtermwhich indicatesthe expectedreductiondue to thesedepl(tion

: processesas a functionof time:

x exp (- yDt- Yw(t-tl)) t > tl

y = (3-I07)

/ x exp (- yot) t <_tI

where

t = traveltimeof cloud in seconds,

'_ tI = time in secondsthat precipitationbegins,

• YD = decaycoefficientin %/sec,

_W= washoutcoefficientin %/sec,

x = expectedconcentrationwithoutdecayand washout,and

× = expectedconcentrationw'th decayand washout.

Dosageis treatedin an analogousmannerusing U1e same exponen-

tialdampingtermas concentration.For informationregardingthe specifica-

_ tlonsof the inputsrequired(t1,yD and Yw), the readeris referredto Section

3.3.6.

:_
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3.2.1.4 MeteorologicalTransitionModel

.'- In essence, this model is built upon a reapplication of the tech-

niques used in the 0-5 km model to the case of diffusionfrom an inclined

line s_urce, l'he model considers the case of full transition and is thus

validfor all timesaftertransition.Sincethismodel approachesthe

standardbox modelfor larget, thereis no need to considera box model

separately,

The t,'ansitionis characterizedby a changein layerstructure,

" windvelocityand thermalgradientat timet*. For times aftert*, the
._'-

.; cloud is not assumed to be adjusted to the meteorological transition. In

the followingmaterial,gridsystemcoordinateswill be used.

_. Let the points (Xrk, Yrk" ZBk) and (x i, Yi" zi) represent the

---._-- coordinatesof the missile'sentry pointto the kth layerand coordinates

of the receptorrespectively.

" " 5:°

The centerof mass of the cloudat timet* is givenby (Xsk,Ysk),

.'_, and the mean velocity in the kth layer is given by uk and g'k" At time t*,5;"
:-2

:_ the layerstructurechangesas indicatedin Fig.3-3.

•;_.

r.

• .4. lI
"_" |

/_" _ Lth layerkth layer
!
l
I
I
I

t* time----"*

Figure3-3 Layerstructurebeforeand aftertransition

_-_.
• C._.

_::. The numberof layerswhich combineto formthe Lth layeris arbitrary,how-

",t... ever,the upperand lowerboundariesare requiredto coincidewith existing
._;_

N" log
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boundariesprior to timet*. The Lth layerhas a mean velocitydenotedby

(EL, _L). Figure3-4 s_owsthe transitionand relevantvariablesin the

xy plane.

North Uk

v (Xsk,Y,_, - -.K_k -.- .._ ............................................

x¢-
_,._ ""x_, yrk) (xi•Yi)

- ...... ) x East

.... . Figure3-4 Horizontalsectionof transition
"-..

-. The transitionproblemincludesrelatingthe (xk, yk) and {xL, yL)

" : coordinatesystems.,transformingthe diffusionformulationfromthe k to L

coordinatesystemand evaluationat specifiedreceptorpoints. Since

• -- kt* (3-Io )
• , . ;.

it followsfrom Fig.3-4 that

Ysk = Yrk - x_ cos(Tk) (3-I09)

and

Xsk = Yrk " x*r sin(Ek)" (3-110)

.. The point (Xsk,Ysk) may be thoughtof as beingthe gridsystemcoordinates

.- of the originof the meteorologicalcoordinatesystemaftert*. The grid

-. systemand the L systemare relatedby
- ._

_" 110
.... ._!

.

-- ".... _ " - I
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xL = - {x - Xsk)sin(_-L)- (y - Ysk) cos (BL) (3-111)
and

YL = (x- X_k) cos(_L) - (y - Ysk) (_L) (3-I12)

zL = z - ZBL

where ZBL _s the vertical coordinate of the bottonz boundary of the Lth layer.

This set of equationsis usedto convertthe coordinatesof the receptorfor

: use in the diffusionformulation.The cloudat time t* can be represented

in the L system by variances along the xL, YL and zL directions, which are

' respectively,

,:: °xL = - +°yksin ( 'L- (3-I13)

yL ':xk2 Oyk 2 - Ok)

_ = Ozk2 (3-I15).;:. °zL_

::: where Oxk 2, Oyk2 and OZk2 are variancesof the cloudwith respectto the k...
-7-

systemat t* and are calculatedas outlinedin Section3.2.1.2.

_: To modelthe transitionof the cloudat time t*, the cloud is imag-
£.

:_ inedto be an inatantaneoussourcein the Lth layerwith axL,ayL, and OzL repre-
•_:

._ sentingthe initialvariancesof the source. The programconvertsthese

: variancesto virtualdistancesusingthe equationsgivenin Section3.2.1.2.

As this "new" cloud proceeds after transition, its variances are calculated

fromthe inputsfor the new layeras beforewith the substitutionof t - t*

for t in Equations(3-86)and (3-87).

:,;. For the purposesof evaluationof concentrationand dosage,the

•," new sourceis assumedto be a finiteverticallinesomewherewithinthe

"_,_.., new layer. With somemodifications,the modelsdevelopedin Section3.2.1.i
"_:._

E
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can be used. The integrationindicated(3-13)now must take on the upper

and lower limitsof H2 and HI respectively,where H2 and HI are the heights

of the upperand lo_r boundariesof the kth layerrelativeto the baseof

the Lth layer. This changesthe error functionsin Equation(3-29)to

H2A2-B H1A2-B
erf err . (3-116)

_A ,_2A

For calculationsaftert*, x is given by

xL-t(t-t*) (;-:17)

and the height of the receptor is.

z = zi - ZLB. (3-118)

; The layerdepth aftert* is the depthof the Lth layer. The dosagemodifica-

• . tionsare analogous,and the resultingformulationis usedwhen the along

wind distanceto the receptoris greaterthan x_.

3.2.2 Deposition Model

j: The mergingof the 0-5 km and 5-30 km diffusionmodelswas

relativelysimpleas therewas no need to providea linkageat the inter-

t.i" face. The 5-30 km model thus runs independently of the 0-5 km model using

different inputs and computational procedures. The case of general depo-

sition is considerably more complex because the linkage between the two

regionsis now impePQtlve. It Is apparent,that to predictfalloutfrom, for

example, 10 kin, one _mst also be able to predict fallout in the 0-5 km region.

'_- If two interfacingmodelsare to be used in predictingfallout,thenmass con-

:_ tlnultymust prevailat the interface. This impliesthat the model for the

-. ll2

i
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lower regionmust have provisionsFordealingwith the mass distributions

generatedby the model for the upperregion. The present0-5 km has no

such provision,which is a consequenceof the chronologyof its develop-

ment ratherthan its shortcomings.Threeoptionswere available: (1) to

modifythe existing0-5 km model to accommodatethe interfacerequirement,

L2} to developa new 0-30 km falloutwhich is independentof the existing

0-5 km mod_l,or (_) to investigatethe possibilitiesof extendingthe

0-5 km falloutmodel to 0-30 kal, In considerationof the time and resources

' available,the thirdalternativewas selectedas beingthe most promising

becauseit eliminatesthe interfaceproblemcompletely.

A falllngplumemodel is used for the predictionof falloutin

_ the 0-5 km region. This permitsthe effectsof diffusionto be included
..

_i in the calculationof contaminationdensity. The use of th_ same layer

structureas that usedin the diffusioncalculations,permitsthe effectsof
4;

_, wind shearto be includedin the calculation.Whileverticallinesources

•_ are simulatedby placinga numberof area sourcesat equaldistancesalong

c the line,thereis no provisionfor inclinedlinesources. Thus for the
.°._

falloutcalculationsin the 0-30 km region,the missiletrajectorymust be
c

simulatedby a seriesof nonconnectingverticallinesourcesas illustrated

in Fig.3-5.

z SimulatedTrajectory------)L_--_-----RealTrajectory

L_er Structure

"i! /
•_ X
; •

• t_.!

,: Figure3-5 Trajectorysimulationfor the falloutcalculationin the
_, 0-30 Ionregion

:_; 113
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Quite clearly,thisform of trajectorysimulationis lessdesirablethan

the inclinedline simulationusedfor the diffusioncalculationin the 5-30

km region;however,the mechanicsof allowingfor the effectsof wind shear

more thanmake up for this orawback. The effectsof densityon terminal

velocityhave not beenincluded,but in the caseof an abort,this can be

accountedfor by adjustingthe inputvaluesof terminalvelocity. Tech-

nicallyspeaking,the 0-5 km model can be appliedin 5-30 km with some

minor chanqesin the determinationof inputs(seeSection3.3.7).For the

• technicaldocumentationregardingthismodel,the readeris referredto

Dumbeuldet al. (1970).

3.3 Inputsfor the 0-30 km Model

: 3.3. l Introduction

; The 0-30 km model requiresthat the userprovideinputsdescribing

• the layerstructure,missiletrajectory,sourcestrength,diffusionparameters

: and the distributionof both particlesize and terminalvelocity. Thissec-

t tion is concernedwith providingsomecriteriafor the selectionof meaning-...

ful inputs.

_ 3.3.2 Criteriafor LayerSelection

The singlemost importantset of inputsis thatwhich describes

: the layerstructure. To be meaningful,theymust providean adequatedescrip-

tionof the atmosphericstateand at the same timereflectthe major assump-

tionsmade in derivingthe modelswhich wilioperatewithi,_the structure.

In termsof prioritytheseassumptionsare:

1. That there is no diffusion between layers; and

: 2. That the eastward and the northward componentsof the wind

•_ vary linearlywith heightwithina layer.

.
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The firstrelatesto the formof the verticalterm used i_ Equation(3-9),

while the secondrelatesto the calculationof shear. Whileno physical

situationwill satisfyeitherassumptionexactly,approximatephysical

analogsto theseassumptionsdo exist. The inversioncharacterizedby its

dampingeffecton verticalexchangeprovidesa good criteriafor the specifi-

cationof layerstructure. The secondassumptionis approximatelysatisfied

in regionswherewind speed and directionare monotonicand have single

valuedinverses. Fig.3-6 illustratesthese criteria.

1 -:
• f° tf

LayerBoundaries
Layer

Boundaries
t /

T I/--- ,,nde
a. Thermalcriteria b. Wind speed and

.: directioncriteria
Figure3-6 Criteriaof determininglayerstructure

The need for the speedand directioncriteriaarisesfromthe natureof the

• wind shearcalculation.Figure3-7 illustratesa hypotheticalcasewhere

use of the thermalcriteriaaboveproducesinputvalueswhich lead to erro-

• neouscalculationsof the effectsof shear.

• °

Layer
b"_ Boundaries

. ,*-

--da

T u
• a. Thermalstructure b. Speedstructure
7

): Figure3-7 Hypotheticalcaseshowinglayerstructurewhich leadsto
,: erroneousestimationof shear effects

.-i_ 115
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Part (a) of Figure3-7 shows the thermalstructureand part (b)

showsthe profileof the alongwind componentof the wind. Use of the

thermalcriteriayieldsthe layer boundariesindicated. The calculation

du
of the sheareffectrequiresthat_ be estimatedoverthe layer. This is

done by Equation (3-119):

AU _ UC" Ua (3-119)
AZ Zc - Za

where the subscripts indicate the point of evaluation. From the diagram,

it is obvious that this estimate is rather Door. In fact, this example

could represent the jet stream with the tropopause at point c, with ub - ua

bei% on the order of 40 m/sec. In cases like this, the layer should be sub-

divided at the jet axis (region of peak velocity), it is desirable that

, thisdivisionbe justifiablein terms of the thermalstructure(seeregion

_, of greaterstabilityin Fig.3-7a). If this typeof a justificationcan

- be made,the divisiondoesnot necessarilyhaveto coincidewith the axis,
J.

althoughit must be near it. In the case that the divisioncannotbe

,: made on a thermalbasis,it may be arguedthatthe exclusionof the jet

: streamand its effectsis not justifiablebecauseit is a majorstructural
o.

formin the atmosphere.

: The above discussionindicatesthat thermalcriterionmay be

extendedto isothermalregionsas well as thosewhich fall betweenadia-

baticanrJisothermal,as indicatedin Fig. 3-8. With these two additional

criteria,the degreeto which the firstassumptionis fulfilledbecomes

'." lessas the layerconsideredto createthe boundariesbecomeslessstable.

-'._ Thus; in determiningthe layerstructure,use inversionsfirst,isothermal
._-

_; regionssecond,and then if the needarises,stableregionsas indicatedin

_-.

_;_

-g.
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Fir. 3-8b. The mechanics of the model also require that layer boundaries

coincide with the height of the tropopause and the 5 km level.

zl \
l ....... "_.... LayerLayer __._ Boundaries

. )[_. Boundaries _.-- --
| ......

i

t ..... T T
a. Isothermal b. Stable but less than

isothermal
Figure3-8 Extensionof layerdivisioncriterion

3.3.3 Use of Soundings

In terms of the criteria discussed above, the sounding data used

to determine the layer structure are at the users option. In specifying

; the inputs for the trial case which is presented in Section 3.4, an AN/F_IO-4

, soundingwas used. The resolution(valuesevery 1000feet)of thesedata

was foundto be sufficientto break up the 0-30 km regionintoan excess

: of twentylayerswhich is the limitof the presentmodel. Datawhich are

more accurateand of a higherresolution,while not necessaryfor the model's

operation,will most certainlyimproveits prediction.

3.3.4 MissileTra_ector7 and SourceStrenoth

The secondmost importantset of inputsis thdtwhich describes

the missiletrajectoryand sourcestrength. In the trialcase, threedif-

ferentmethods(twographicaland one computational)of calculationof

sourcestrengthwithina layerwere compared. Thesemethodsstem from

the relationshipgiven in Equation(3-47). It is necessaryto have detailed

:, dataon the trajectorywhich givesaltitude,velocity(alongthe trajectory),

.;

7

Ill
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range and azimuth angle of the vehicle. The resolution necessary is

dependent on the methodof calculation used. For the graphical methods,

the resolution requirements are given in Table 3-2.

Table 3-2 Resolution requirements for graphical procedure for finding
source strength

Height Interval (m) Resolution

0 - lO0 not used

100 - 1000 lO0 meters

1000 - 14000 1000meters

• 14000- 30060 2000meters
m L _ _

For the computational procedure, a resolution of 0.5 second for

the entire trajectory is adequate, however, for small layers at great heights

this causes someerroP because the vehicle's residence time in the layer is

on the order of the resolution.

; The computationalprocedureis a straightforwardfinitedifference

•" approximationto Equation{3-47):

.. dm_ _At
)' d-_- QL_= _ (3-120)

where At is the residence time of the vehicle in the layer and A_ is the length

of the trajectory in the layer. The residence time c_- be approximated from

the layer structure and the trajectory data. A_ may be found as follows:

A_ = (Ax2 + Ay-_+ Az2)'/2 {3-12l)

where

_: AX = RT coseT - RB cosoB,

.{ Ay = RT sineT RB _inoB,

Az = layerthickness, 118
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with

{R,o)--polarcoordinatesof vehicle{range,azimuth)with the
subscriptsT and B indicatingevaluationat the top and
bottomof the layerrespectively.

For handcalculation,thismethodis tedious,especiallywhen

severallayersare being considered.The estimatedvaluefor QL is likely

to be erroneobswhen At has the samemagnitudeas the resolutionfor the

data. Interpolationwill to some degreereducethis errorand could

easilybe incorporatedintoa machineprogramfor calculationof QL" This

method,however,requiresthat_ be constantover the layer,and it is desir-

able thatthisbe at the optionof the user.

The graphicalmethods,on the otherhand, are fasterand allowthe

userto specify_ as a functionof height. The fastestmethodis to plot

z as the ordinateand the instantaneousvalueof QL(_) as the abscissaon

log-logpaper. The mean valueof QL for the layeris estimatedby takingthe

valueof Q whichcorrespondsto the midpointon the curve betweenthe two

heightswhich definethe layer. For small layerswith shortresidencetimes,

thismethodwillgive very accurateresultsbecauseas the sizeof the layer

decreases, the meanvalue of QL approaches the instantaneous value at the

center of the layer. This method is limited to layers which begin above

the lO00 meter level, and the first methodmust be used to calculate QL in

this region.

The thirdmethodis graphicaland is intermediatein termsof

the amountof calculationaecessary. Thismethodis in essencea stepwise

numericalintegrationof the equation

1 /ZT v_._.Tdz (3-122)
QL = ZT-ZB "B

i

• llg
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whichmay be rewrittenas

1 fen zT v__T d _nz (3-123)
QL - ZT-ZB "¢n zB

where zT and zB are the top and bottom of the layer respectively. This

indicates that integration can be done on semilog paper by plotting z on

the logarithmic axis and mz/v(z) on the linear axis. The integral is

evaluated by a trapezoidal approximation so that

QL_=ZT-ZB v-_ + Cn (ZT/ZB) (3-1241

as indicated in Fig. 3-9.

zl ,l
_../X' .',, ///_ , . The quantity OL(ZT-ZB) is given

I |v-_ by the shadedarea.
I

I
: L / i , ; mz
: vT(

Figure 3-g Single trapezoidal approximation for graphical estimation of QL

• ...

The accuracy of this method is dependentupon the shape of the _n (zT) vs.C

mz/v(z) plot. In applyin_ this method in estimating QL for the trial case,

it becameapparent that the methodwill have the largest error in the

1 to 1000 mater region; above this, the results were acceptable. However,

if line AB in Fig. 3-g has too muchcurvature to permit a linear approxi-

mation, the layer may, for the pUTpOSeof QL calculation, be broken up into

several trapezoias as indicated in Fig. 3-10. In practical use, probably not

more than two trapezoids will be needed, with one being satisfactory in

most cases.

-<
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Figure3-I0 Three-steptrapezoidalapproximationfor graphicalestimation

of (lL

3.3.5 DiffusionParameters

3.3.5.1 0-5 km Region

The 0-5 km model remains,n_anged fromthe versiondevelopedby the

G_ and is documentedextensivelyin Dumbauld,et el. {1970)and Record,et el.

{lg70). Therefore,it is recomend_ thatusers consult_ese documentsfor

instructionson the calculationof the variousparametersrequiredand for

programuse.

_ 3.3.5.2 5-30km Region

The essentialdiffusionparametersin thisregionare the initial

; s_nd_rd deviationsof the sourceand the lateral,a(ongwind,and vertical

, powerlaw exponents. The readeris referredto Section3.2.1.2for discus-

sionof the powerlaw coefficientsand theircalculationfromthe average

' temperaturegradientin the layer. The visualdiameterof the exhaustplume

justafteremissioncan be estimatedby assumingthat it correspondsto a

ten-foldreductionin all concentrationat the plumeaxis (Slade1968).

Thus,

." Ri
•; oi --_ (i - x,y) {3-1ZS)

_,_-/_":_. 121
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where

: o. = the standard deviation, and
"" 1

Ri = the radius of the plume.

3.3.6 Specification of Depletion Parameters

As explained in Section 3.2.1.3, the required inputs for the wash-

out and decay model are tl, the time precipitation starts, and xW and xD, the

coefficients of washout and d_cay respectively.

: While it is relatively easy to predict, on a synoptic basis, the

occurrence of precipitation over a specified period, it is not possible

to predict the exact time at which the precipitation will begin. For this

reason, it is suggested that t 1 be assigned several values for each run in

which precipitation is predicted. The results obtained in this fashion

_]l indicate the sensitivity of the diffusion and fallout patterns to tl.

Considerably more has been done in connection with the estimation

: of the washout coefficient whici_ is primarily a function of precipitation

type and rate. It is suggested that this coefficient be estimated by the

following formulas:
.

. .:. xW= A__. I_ for gases (3-126)60
.-

. - = A

-- "'W _ for precipitation (3-127)

where Dmis the molecular diffusivity of the gas in units of cm2/min, and

_ is given in Table 3-3 for various precipitation types.

The decay coefficient xD is dependent upon the material under

, consideration and to somedegree the environment. If no coefficient Is

available, and it is thought that there is no sensible decay on a time scale
:.

_: of five hours, then the coefficient should be set to zero. If the coefficient

• .;I-_-
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is unknownand it is thoughtthat thereis appreciabledecay,thenit

is suggestedthata sensitivityanalysissimilarto that done for tl

be performed.

Table3-3 Parametersfor precipitationremovalmodels

h ParameterValue
,,,, l ,, - ,,-

ParticleDiameter
Precipitation (microns)

Precipitation Rate .....
Type (incheshr-I) Gas S >20

Drizzle O.Ol _2.0 x lO'I 0.004 l 0.006

Light rain 0.10 1.35 x 10-2 0.024 0.041

• Moderaterain 0.30 _2.5gX 10-2 O.04g 0.075

Heavy rain 0.70 3.88x 10-2 0.070 0.106

3.3.7 Inputsfor the DepositionModel

: 3.3.7.1 StandardDeviationsof the Wind Elevationand AzimuthAngles

The parametersof major importanceare the standarddeviations

of the wind azimuthand elevationangles,Oa and oe respectively.Measure-

ments of theseparametersin the surfacelayerare readilyavailablein

sufficientquantityso that they can be empiricallyrelatedto wind speed

and stability. However,in the free atmosphere,estimatesof these and other

diffusion-relatedparametersare ratherdifficult,if not impossibleto

obtain,and for thisreason,analogousempl.-Icalstudiesare apparentlynon-

existent. Kao and othershave contributedmuch to the studyof the large

scaledispersionin the free atmosphere.However,thesestudiesare gener-

allyon a much largertimescale thanthe presentstudy,therefore,theydo
.(."

not aid in the estimationof oa and oe-
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The factthat diffusiondoes takeplace in the free atmosphere

indicatesthat_e and oa aremost certainlynot zeroexceptin verystable

regions. Kellogg(1955)has observedthatthe mass growthof a diffusing

cloud in the freeatmosphereis correlatedwith stability. This result

indicatesthat,as in the boundarylayer,Oa and _e are dependentupon

stability. Fromestimatesof the verticaland horizontaldiffusivities,

it can be arguedthat Oe is probablymore dependentuponstabilitythan_a"

For the purposesof crudeestimation,the criteriafor the surface

• layercan be appliedto the free atmoshhere,however,this is very tenuous.

Due to the extremedifferencesinwind speedin the surfacelayer and free

atmosphere,it is probablybetternot to use this as an indicator.

3.3.7.2 Calculation of Terminal Velocity

The usual equaticn (Koch et al 1968) for droplet diameter as

" a function of still air terminal velocity is given by

0=VKv2-+cV (3-128)
where

_ D : dropletdiameter,cm,

_i K = (2.225x lO-2) pl.2_

j:

: V = stillair terminalvelocity,cm/sec,

C= g.(Is.8_p)' cmsec,

Ps = dropletdensity,gm/cm3,

_; p = densityof air,gmlcm3,

.... _.. g = 980 cm/sec 2, and
_,.

:._ n = viscosityof air, dynesec/cm2.
_,.o

"' " °",_t

124
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Whilethisequationmust b_ solvediteratively,it providesa

goodmeans for estimatingeffectsof densityvariationwith heighton

terminalvelocity. The viscosityof air as a functionof temperatureis

givenby the equation

n = .0001702(I + .00329T + .000007T2) dynesec/cm2. (3-12g)

With soundingdatagivingair temperature(T°C)and densityas a function
,:.

of height,the numericalapplicationof this set of equationsyields terminal

: velocityas a functionof heightand particlesize. If this functionis

givenby v(z,D)and the burstheightis given by H, then an averageterminal

.. velocityoverthe layercan be foundfrom :

_T(D) = H , D = particlediameter (3-130)

oH dz

_-

v where the integralis the falltime fromheightH. If no abortoccurs,H

il shouldbe set __qualto the verticalcoordinateof the centroidof source

}-:i" strengthdistribution.This valueof H is given by

•;:i QL(Z)dz dz
=" "0 ,_'0
5; H = "r3uuuu = (3-131)

/ &tR2_
QL(Z) dz

c" ,r0

where Q(z) is the sourcestrengthas a functionof height,_ is the mass

flo_.ratefrom the missile,and tR is the time requiredfor the vehicleto

reachan altitudeof 30 km. While thismethodof correctionis approximate,

_ it is thoughtto be betterthan not correctingfor the effectsof density

_c variationor settingarbitraryvaluesfor H.

_: For a more detailedanalysisof the calculationof terminalvelocity

• _. in the atmosphere,the readeris referredto Hageet al (1966)

IF
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3.4 TrialCase - February7, 1966

3.4.1 SynopticSituationand SoundingData

Figure3-11 illustratesthe surfacemap for February7, 1966.

The weatherpriorto thisdate had been dominatedby the high pressure

systemoff the southeasterncoastof the UnitedStates. The eastward_ove-

mentof thissystemcausedsurfacewind shiftsfromeast to southeast. On

the synopticscale,therewas littlechanceof precipitationin the KSC area.

Therewas, however,a distinctpossibilitythatlow level convergencecon-

c nectedwith the eastwardmotion,of the highpressuresystemand the subse-

. quent low level advection of moist air from the south and east may have

caused localized convective storms during the afternoon of the seventh.

The sounding used to determine the layer structure was taken fromI

the 1815ZANIGMD-4rawinsonderun,ascentNumber5022. The soundingdata was

convertedto standardmeteorologicalunitsplottedas shown in Fig.3-12.

The temperatureprofileindicatesthat thereare more thanenoughinversions

and first orderdiscontinuitiesto permitdivisionof the 0-30 km region

'i intoan excessof twentylayers. Along the verticallinecorrespondingto

i 190° are horizontallinesegmentsindicatingthe layerdivisionsbased upon

the criteriadevelopedin Section3.3.2. The segmentsat 5 and 18 kilometers

representthe mandatorydivisions,correspondingto the regionmodeledby the

GCA and the tropopauserespectively.This trialcase is quite interesting

due to the presenceof the jet stream(peak)at 13.4 kilometers.The

sensitivityof the model to wind shearcouldbe testedby assumingvarious

;\ layerstructureswhich in effectneglectsomeor all of thewind variation

, with heightin this region. The layer structureand other inputparameters

derivedfrom the soundingare listedin Table 3-4."4

126
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Table3-4 Layerstructurefor testcase

I Wind Thermal

Top Direction Speed Gradient
Layer (meters) (°) (meters/sec) (°/km) 13= .88- 1.08.'.z'"Tx I0-'

0 0 160 3.0

l 1828 226 7.7 -9.375 .3901

2 2743 258 8.2 2.185 .8798

3 5000 284 8.0 -6.735 .8873
i

4 7010 291 15.4 -7.958 .8886

5 7315 294 15.9 -3.608 .8839

6 9144 272 19.0 -7.983 .8886
i
I

7 10363 260 ' 38.6 -3.034 .8833

8 10972 256 50.4 +3.280 .8264

9 12801 247 65.3 -3.772 .8841

10 13716 245 64.3 -7.5 .8879
_..

" I1 16154 253 32.9 -3.731 .8840

.: 12 16459 253 28.8 +3.280 .8764

., 13 17983 240 21.6 -2.362 .8825

, 14 20421 287 9.2 5.331 .8742

; 15 23165 156 3.0 .729 .8792

: 16 26517 138 I0.8 1.342 .8786

17 27432 140 9.2 2.187 .8776

18 29261 120 8.2 -.273 .8803

19 30175 132 8.2 4.811 .8748

...-.
/:.

z_,

-" 129,-.-_
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3.4.2 Trajectory Data

Both the diffusion and fallout models require inputs giving the

point of intersection of the trajectory with each layer boundary and the

source strength in each layer. The calculation of these inputs requires

that a prior knowledgeof the trajectory be known. For the trial case

presented here, these data were obtained from a program listing found in

"Apollo Saturn V Post Flight Trajectory AS508," D5-15560-8, Boeing Huntsville,

: June 10, 1970. Becausethesedata satisfiedthe _esolutionrequirementsdis-

cussedin Section3.3.4and the programis availableto NASA personnel,it

is recommendedthat it be used in the case studiesof actuallaunches. The

data requiredfor calculatingthe intersectionsand sourcestrengths(the

time after launchof intersection,range,azimuthangleand speedalong the

trajectory)are listedin Table3-5. The x and y gria systemcoordinates

of the pointsof intersectionare calculatedfrom the range (R) and azimuth

anglesby Equation(3-132)and (3-133)(seeTable3-6 for tabulatedvalues

for tria.1case):

x = R sine (3-132)

y = R cose. (3-133)

: The calculationof sourcestrength,as discussedin Sections

3.2.1.I(briefly)and 3.3.4 (in fulldetail)requiresa knowledgeof the

mass flow rate (m) for the vehicleas a functionof ti_ or height. Since

no data on this variationwere immediatelyavailable,a steadystatewas

assumed. The S-ICstageof the SaturnV containsfive F-l engineswith

a mass flowrateof 3 x IOs Ib/minyieldingan _ for the vehicleof 25,000

' Ibs/sec. The graphicalmethodsrequirethe preparationof plotsof _n

(_/v(z))vS. an(z)and zn(z)vs. mz/v(z)for the firstand secondgraphical

_. 130

-ik

1970026539-159



Table 3-5 Trajectory data corresponding to layer intersections

Time SpeedA1ong
after Launch Range Azimuth T.-aj ectory

Layer (sec) (m) (o) (:n/s)

1 36.5 98.7 79.1 114.9
t

2 43.5 263.8 i 75.3 ! 150.3

3 56.5 949.6 i 73.6 230

4 64.5 1853.6 73.2 I 298

5 65.5 1989.8 73.2 307

6 71.5 2871.1 73.1 365

7 75.5 3779.4 72.99 405

8 77.5 4243.7 72.96 424

9 82.0 5438.1 72.91 467

i 10 84.5 6197.6 72,_8 513

• lI 90.5 8330.6 72.83 589
,2

:, 12 91.0 8529.5 72.82 604
.

•, 13 94.5 9797,6 72.80 I 653
. I
" 14 99.0 12479.8 72.75 733
'L I

-_ 15 104.5 15363.7 72.70 829
"i

: 16 110.5 19447.2 72.64 945

17 I12.0 20582.4 72.6 946

18 115.0 22998.4 72.6 " ,

19 116.5 24281.4 72.6 :"'5 :

t.
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Table 3-6 Coordinates of intersection of layer boundaries and trajectory
in grid system

Grid System Coordinates of Intersection (m)

Layer x y z

l 96.9 18.7 1828

2 255.2 66.9 2743

3 911.0 269.0 5000

4 1774 535.T 790

5 1905 575.l 7315

6 2747 834.6 9144

7 3614 lI_5 10363

8 4058 1240 10972

9 5102 1570 12801

10 5924 1822 1371
t:

i

11 7958 2463 16154

12 8148 2522 16459

13 9359 289_ 17983

14 11921 3690 20421

15 14668 4569 23165

16 18557 5815 26517
I

17 1964l 6155 27432

18 ' 21946 i 6877 29261

19 23l70 7261 30116
!

132
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methodsrespectively.In the trial,sincea steadystate assumptionis made

concerningm, it is perTnissiblein the secondcaseto plot _n(z)_s. z/v(z)

and pickup the multiplicationlater. Table3-7 presentstabulatedvalues

for the graphsshownin Pigs.3-13 and 3-14. The data necessaryfor use

of the computationalmethodand the resultingestimateof QL ' as well as the

estimatesobtainedfromthe graphicalmethods,are shown in Table3-8. These

resultsindicatethat:

I. The computationalmethodworks best in layerswith large

. residencetimes;
:.
_- 2. Resolutionproblemsin the computationalmethodcause

anomalousestimates(see,forexample,layers12, 14 and 17

of Table3-8);

_ 3. Exceptfor surfacelayersthe resultsof the graphical

.: methodsare reasonablyclose.
-.

: Becauseof its nature,the secondgraphicalmethodis probably

" most accuratein layersabove lO00metersand is, therefore,recommendedabove

•: the othermethods.

•_- 3.5 Limitationsof the PresentModel and Recommendations

Thereare a numberof areas in whichmore effortwill undoubtedly

bringaboutan enhancementof the presentmodel'spredictivecapability.

In orderto facilitatea pointby pointd,scussion,theseareashavebeen

categorizedin termsof the natureof each limitationand its potential

solutions. Includedin thesediscussionsare recommendationsas to how

the potentialsolutionscan be implemented.

._.

-'{

• _ _ ...... =.r .-_.;
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Table 3-7 Tabulated values of m/v and z/v, as calculated from trajectory
data taken from Boeing Huntsville Report referenced in text

Time Height
afterLaunch above Ground _/v(z-) z/v(z)

(sec) (m) (1b/m) (sec-1 )

1.5 .5 13812 .276

7.0 44.0 1745 3.07

12.0 147.0 9228 5.42
I

15.0 240.0 706 ! 6.78

17.5 338.0 584 7.91

• 20.0 454.0 495 8.99

' 21.5 534.0 451 9.63

": 23.5 651.0 401 10.45

.... 25.0 749.0 368.5 11.04
• ...-_

-_

::_' 26.5 854.0 341.6 11.66<-,

"_: 28.0 968.0 317 12.27

•T: 33.0 1460.0 246.6 14.40
;_
_.: 38.0 1957.0 204.9 16.04
_. I

• :_,; 42.0 2477.0 175.8 17.42
."_

:" 45.5 2955.0 154.8 18.34
_'" I

_." I

; 51.0 3938.0 128.0 j 20.16

56.0 4940.0 108.7 21.48

60.5 5968.0 94.5 i 22.55

64.5 6986.0 83.8 23.41

68.0 7960.0 75.7 24.12

,_', 71.5 9014.0 68,7 24.78

,, 74,5 9981.0 63,3 25.29
,'=i..

_. Contl nued
_,
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Table3-7 Tabulatedvaluesof _Iv and z/v,as calculatedfromtrajectory
data takenfromBoeingHuntsvilleReportreferencedin text
- Concluded

Time Height
afterLaunch aboveGround m/v(z-) z/v(z)

(sec) (m) (Ib/m) (sec-I)

77.5 I1009.0 58.5 25.74

80.0 I1912.0 54.7 26.08

82.5 11851.0 51.3 26.37

85.5 14055.0 47.5 26.69

90.0 15973.0 42.42 27.11

94.5 18044.0 38.02 27.44

98.5 20009._ 34.6 27.66

102.5 22090.0 31.5 27.82

106.0 24005.0 29.1 27.92

109.5 26007.0 26.9 27.98

. 113.0 28095.0 24.9 28.01

If6.0 , 29953.0 23.4 28.00
! .....

o.

,-. 135

• =,
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Table 3-8 Calculationof sourcestrength

; Computational

Length Method
J of Tr_ectory Residence RT " _ GraphicalMethods

( in Layer,_ Time (RT) QL - Ag. First Second
Layer i. (m) (sec) (Ib/m) QL QL

l 1830 36.5 498.6 465 896.4

2 929.8 7 !88.2 185 186.8

3 2359 12.5 ; 132.5 135 131.3

4 2203 8.5 96.5 95 94.3

5 33_ 1.0 74.9 82 82.2

: 6 2030 6.0 73.9 74 74.3
t

7 1520 4.0 65.8 64 64.8
I
!

,: 8 765 2.0 65.4 J 60 60.0
I

•_ 9 2] 32 4.5 52.8 55 54.9

lO 1256 2.5 49.8 l 51 50.0

;_ ll 3239 6.0 46.3 ! 47 44.3
• I

12 364 .5 34.3 I 45 41.6
)

: 13 1982 3.5 44. l ' 41.5 39.7

_ 14 3624 i 4.5 31.0:_ ! 37 36.0

_: 15 3987 5.5 34.5 t 32.5 32.0

• 16 5283 6.0 28.4 ) 28.5 28.2
• t

17 1459 2.5 42.8 i 26 26.0!

18 "3030 3.0 24.8 24.5 24.7

19 1576 1.5 23.8 23.5 23.6

.¢

• "C,_..

;6:
)'_:.
_.,_""",_ 138
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3.5.1 Shear

There are a n_nber of refinements possible in the present shear

model. The most evident is the requirement for linearity in u and v

throughout a layer. It is probable that this drawbackcan be overcomeby

running a regression analysis on u and V within a layer resulting in two

poloynomials, which can then be substituted into the systeP of differential

equations for the cloud moments. The solution of the resulting equation

can probably be obtained by either Laplace or finite cosine transfom tech-

niques (as previously applied). As in the -esent model, this procedure

would lead to expressions for the variances of _he cloud. The application

-- of these variances would, however, present another p;_,_,_n since with non-

linear velocity profiles there is no guarantee that the initial cloud dis-

" tributionwill subsequentlyremainGaussian. This,of course,impliesthe

needfor the calculationof highermomentsincludingcovariances.The

; problemof findinga closedform for the resultingdistributionis probably
+

best handledby statisticalmethodsincludinga considerationof the dis-

tribution's moment-generating function.

.:, Thisdiscussionreadilyleadsto anotherpotentialimprovement

-. of the presentshearmodel. In derivingthe inclinedlinemodel,the

covariancesor correlationcoefficientsin the xz and xy directionwere

ass_aedto be zero,whichwill sufficeas a firststep in the model-'r.q

process. A more exact representationof shearwill probablyresultfro;_

the inclusionof a non-zerecovariance.This is directlyindicatedby the

,, factthat in a shear fieldthe cloudaxes rotate.

A thirdelementof the shearanalysisregardsthe specification

i" of valuesfor kz. While averagevaluesfor the troposphereand stratosphere¢
+.

can easilybe foundin the literature,littlecan be said aboutthe variation
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of kz with height. However,for the resultsof the shearanalysisto provide

an improvementover thoseof the k theory,kz shouldbe specifiedas an ana-

lyticfunctionof heightwithineach layer.

3.5.2 DiffusionParametersin the FreeAtmosphere

Hand in handwith the problemof specifyingkz as a functionof

height,is the problemof determininga set of diffusionparametersfor the

freeatmospherein termsof readilymeasurablequa1_tities.As indicated

in Section3.3.7,the applicationof empiricallaws derivedin the boundary

layerto the freeatmosphereis questionable.In fact,the presentcriteria

for determiningthe power-lawcoefficientappearsto be to some degree

insensitiveto changesin stability. A greatervariationin the coefficient

with temperaturegradientis indicatedon the groundsof both sensitivit_

and the thermalstructurenear the ground (intensegradients)where the

presentcriteriawere developed. A theoreticalbasisfor modificationof

the presentcriteriamay be possibleby usingstatisticalmodelsof diffu-

: sion. An extensivedata basewill be necessaryto developsimilarcriteria

for the freeatmosphere.

3.5.3 The Natureof the n_ffusionProcessat the Layer Interfaces
..

In derivingt.hepresentmodel,the interfacebetweenlayershas
"._

": been assumedto be a reflectingsurface. A logicalextensionto this is

the considerationof partialreflectionand partialdiffusionthroughthe

interfaceas a functionof stability. The incorporationof the work done

by Hilst (1967)and Priestley(1953)would providea startingpoint for

such consideration.

3.5.4 Layer Structurear,dMeteorologicalInputsfor the FalloutModel

_ Modificationsto improvethe falloutmodel are based upon the

use of numericalintegrationto determinethe trajectoryof the center

; 140
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of mass of area sourcesused to simulatethe source. Specificallythis

would include:

I. The additionof air densityas an input;

2. The inclusionof the calculationof terminalvelocityin

the program;

3. The provisionfor a layerstructurewhichwill alloweach

pointon th_ somldingto be used as an input;and

4. The additionof the synopticscaleverticalvelocityof

the air in the regionof interest to allow for air flow

along isentropicsurfaces.

More sophisticatedimprovementscan be made by st'_dyingthe effect

of turbulenceon the dispersionof the cloudas it falls. Thesemodifica-

tionswould primarilyeffectthe calculationof the horizontalcloud vari-

ances. In developinfan operationmodel,theseeffectsshouldbe related

- to a parameterwhich is easilymeasured,such as the thermalgradientstudies

done by Csanady(1963)and Katz (]965). These studies,concerningthe effects

of turbulenceon fallingparticl,_s,are a logicalstartingpoint for this type

of modification.

_ 3.6 References

Aris,R. 1956. "On the DispersionoF a Solutein = FluidFlo;,ingThrough
a Tube," Proceedingsof the RoyalSociety. A235:67-77.

Csandy,G. T. 1969. "Diffusionin an EkmanLayer.' Journalof the Atmos-
phericSciences. Vol 26. May ]969.

Dunlbauld,R. K., J. R. Bjorkland,H. E. Cramerand F. A. Record. Ig70.
"Handbookfor EstimatingToxic FuelHazards." GCA Corporation.Bedford,
Mass. NASAContractorReport. NASA CR-61326.

Gee,J. H. 1967. "A Noteof the Effectof DirectionalWind Shearon Medlum-
._ ScaleAtmosnherir.Diffusion."QuarterlyJournalof the RoyalMeteoroloqical

Society. No. 88:382-393.

;: 141
J

• *°

1970026539-170



Hage, K. D., et al. 1966. "Particle Fallout and Dispersion in the
Atmosphere." Final Report. Sandia Corporation. SC-CR-66-2031.

Hilst, G. R. 1967. "Environmental Hazard Study." The Travelers Research
Center, Inc. 250 Constitution Plaza. Hartford, Conn. NASAContractor
Report. NASAOR-61163.

Hogstrom, V. 1964. "An Experimental Study on Atmospheric Diffusion."
Tell us. 16:205-251.

Katz, J. E. 1966. "Atmospheric Diffusion of Settling Particles with
Sluggish Response." Journal of Applied Meteorology. No. 23:159-166.

Kellogg, W. IV. 1956. "Diffusion of Smokein the Stratosphere." Journal
of Applied Meteorology. No. 13:241.

Koch, R. C., et al. 1968. Chemical and Biological Weaponsand Defense
Technical Data Source Book. SupPoi_tlngStudy Number3: VX Models and

: Parameters. Report+Number7301-7. GEOMET,Incorporated. Rockvil l e,
Maryl and.

Priestley, C. H. B. 1953. "Buoyant Motion in a Turbulent Environment."
Austrailian Journal of Physics. Vol. 6. pp.279-290.

Record, F. A. ,et al. ]970. "Analysis of LowerAtmospheric Data for Dif-
fusion Studies." GCACorporation. Bedford, Mass. Report No. TR-69-15N.

Saffman, P. G. 1962. "The Effect of Wind Shear on Horizontal Spread from
an Instantaneous GroundSource." Quarterly Journal of the Royal Meteoro-
logical Society. No. 88:382-393.

Slade, D. H. ]968. "Meteorology and Atomic Energy." U. S. Atomic Energy
Commission/Division of Technical Info_nation.

: Smith, F. B. 1965. "The Role of Wind Shear in Horizontal Diffusion of
Ambient Particles." quarterly Journal of the Royal Meteorological Society.
No. 91:318-329.

Taylor, G. I. 1954. "The Dispersion of Matter in Turbulent Flow Through
a Pipe." Proceedings of the Royal Society. A233:446-467.

Taylor, G. I. 1953. Proceedings of the Royal Soc!ety. A219:186.

Tyldesley, I. G. and C. E. Ivallington. 1965. "The Effect of Wind Shear and
Vertical Diffusion of Horizontal Dispersion." quarterly Journal of the
Ro_/al Meteorological Society. No. 9l:158-174.

P: 142

1970026539-171



APPENDIXA: CORRECTIONOF THE MSFC FILM DATA

Allowancemust be made for wind transportof thecloud toward

or away from the camera. The followingproceduredividedthe total

testfiringperiodintotwo regions: a regionwherejet effectsare

dominant,i.e.,VT>>VA whereVT is the velocityof the jet and VA is

atmosphericwind velocityand a regionwhere a'_osphericeffectsare

dominant,i.e.,VT_ O-

RegionI: VT->VA

FigureA-l illustratesthe geometryof the conditionsthatexistwhen

jet _ffectsare dominant. The equationsfor lin I)and CED are given

in equations(A-I}and (A-2)respectively.

x _ Y z (A-])cos e s_n o = tan

X _ Y+L _ Z

Fm r zm (A-2)
where

X = horizontaldistance (meters)

Y = distancecloudmoves towardor awayfrom
cameraplane (meters)

Z = vertical distance (meters)

= deflector angle measuredfrom horizontal (degrees)

e = gO-B = azimuth angle measured from true north (degrees)

Xm, Zm = the converted coordinate data measuredby
analyzer.

L = distancefromcamerato teststand (meters)
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: where

= deflector angle measuredfrom the horizontal

o = 27u-(azimuth angle ,nea.euredfrom the north)

A = cloud origination point

(; = camera position

D = pointof intereston cloud

E = pointof interestas n_asuredby analyzer

Y : distancecloudmoves _c_ardor away fr_ cameraplane.

Figure A-1 Geometry of conditions that exist when jet effects are dominant
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Solvingfo_ X and Z in termsof Y in (A-l)yields

X = Y cot o (A-3)

and

Z = Y tan _/sine. (A-4)

Solvingfor X and Z in termsof Y in (A-2)yields

XmY
X - L + Xm (A-5)

and

ZmY
z = T + Zm (A-6)

If Xm and Zmwereknownprecisely,then (A-3),(A-4),(A-5)and (A-6)

couldbe solvedsimultaneouslyfor Y which couldbe used to correctthe

:. data. However,sincetheyare not knownexactly(differingby a ,',Xm and

. , _Zm,respectively),linesAD and CEDmay not intersect. In the XZ plane

:: the distancebetweentheselines is givenby equation(A-7).

:-: XmY ZmY
•: B = ((Y cot o Xm)2+ (Y tan e/sine Zm)2)1/2 (A-7)- L L

' I- the case thatlinesAD and CED do not intersect,the value
t

-C of Y f_rwhich B is minimizedis used to calculatethe correctionfactor.

/ Thisvalue is foundby settingthe derivativeof B (withrespectto Y)
2

equalto zeroand solvingfor Y. Thisprocpd=r-eyields:

kXm + cZm
Y -- (A-8)

k2 + c2
where

k = cot e -Xm/L (A-g)

:" and

•";'" c = tan e/sin o -ZmlL. (A-IO)

.._."

IE.e-
.-=_
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Substitutingthisvalueof Y into (A-2),one obtainsthe "real"coordi-

natesXR and ZR, where XR is the correctedhorizontaldistanceas mea-

sured fromthe firingpoint in metersand ZR is the correctedvertical

distanceas measuredfrom the firingpointin meters. The comparison

of the resultsfrom (A-l)and (A-2)yieldsan estimateof the error

in Y.

Representativevaluesof Xm and Zm, takenfrom CaseTWF 037

for a timeafterfiringequal to threeseconds,were used to checkthe

above procedure. Readerl had valuesof 133.12m and 91.20m for Xm

and Zm respectively,while reader2 had valuesof I17.25m and 81.68m.

Thesewere averagedto yield Xmm= 125.18m and Z-mm= 86.43m. Usingequa-

tion (A-8)for e = 48° and _ = 30° one obtainsY = I12.13m. Substituting

thisvalueinto (A-3)and (A-4)yieldsX, = 124.53m and Zi = 96.75m;

substitutioninto (A-5)and (A-6)yieldsX2 = 128.59m and Z2 = 88.78m.
i

: The differencebetweenXI and X2 is -4.06m and Z] - Z2 is 7.97m which

is well withinthe variabilityof Xm and Zm.

. Region 2: VT_O

| ._ For the correction of the film d_ta whenVT-_O an estimate of

the heightwherejet effectsbecomenegllgibleis needed. At this

: heightbothZR and Y wlll be known. It is now assumedthatat any

heightaboveZR atmosphericwindswil dominate. The data given for

each casegivewind speedand directionfor selectedheights. Itwill

be assumedthat thereis a linearvariationof wind speed and direction

betweenmeasuredvalues. Itwill alsobe assumedthat the vectorwind

_" in a layer Jetweena measuredheightZmz and a highermeasuredheight
_°

•_. Zm2 willbe approximatedby the vectorwind at Zm]. Usingthese

-_:

N
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assumptions, the value of Y at any measuredheight ___nz will be given
• by (A-11) and (A-12).

Y(Zmi)= Yti.1+ Va(Zmi) (ti - ti_I) i > 0 (A-ll)

tI - ti_I = O i = 0 (A-12)

where

: Y(_i) = value of Y at height measured Zmi

" ti = timeat which Y is beingmeasured,and

Va = atmospheric wind velocity at height Zmi"

.. For the casei = O, the initialvalueof Y at Zmo is used,where Zmo
is the height where jet effects become negligible. Generally, the

_.:_ timeat which the heightof a pointon the cloud is equalto Zmo, is

-: bracketedby two consecutivetimes,tp and tR, at whichmeasurementsare

}_ made. In the case i = i, the valueof ti.I is definedas tp where

tp; < _R"

.:_
_°

'2"

g.
:

.a

-._
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APPENDIXB: VERIFICATIONOF CORRECTIONTECHNIQUE

B.l Introduction

In lieuof havingrealdata uponwhich the correctiontechnique

can be verified,a procedure,usingsynthesized(andhence known)trajec-

torieswas developedto test the mathematicalvalidityof thistechnique.

The testingproceduremay be outlinedas follows:

I. Trajectoriessimulatingthe movementof pointson the cloud
L:
:_ were generatedmathematically.Thesetrajectoriesthen

•- correspondto the "realvalues"discussedin AppendixA.

.: 2. From the trajectories,valuesrepresentingthe filmmeasure-

mentsare generated.
..

•,: 3. The correctiontechniqueis appliedto the '_eesuredvalues"

generatedin step (2) to obtaine_+.imatesof the trajectory
"4-'..

generatedin step (1).

__ 4. The laststep involvesa comparisonof the '_neasuredvalues"

.:'_i with the "realvalues"as a functionof the parametersused

-i_"L in generatingthe trajectory.

.:.._; B.2 AccuracyLimitsof the Phase 1 CorrectionProcedure
;--:.

._,.-.: A basicquestionof the validityof the firstphase correction
T_-..

:_): is thatof the uniquenessof a particularset of measuredvaluestakenfrom

the filmanalysis. A set of measuredvaluesis termeduniqueif it corre-

spondsto one and only one realtrajectoryin three-dimensionalspace. The

physicalcharacterof the correctionproblemindicatesthat uniquenessis

ti_:".- the exceptionratherthanthe rule. Considertwo independenttrajectories

!i_c,:" givenby radiallinesextendingfromthe origin(cloudsource):

• g__

• _,_,

-._._,
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z

" XR = cos ".cot , ZR _ (B-I)

YR = sin u cot -_ZR _ TrajectoryI (B-2)ZR = Z(t) (B-3)

and

XRI = cos eI cot _i ZRII (B-4)

YRI = si_101 cot _I ZRI_ Trajectory2 (B-5)ZRl = Z1(t) {B-6)

where

: _ = azimuthangle,

; _ = elevation angle, and

XR,YR,ZR= coordinatesof a pointon the "real"trajectory.

" The corresponding sets of "measured values" are given by
-o .

• "" L XR

, Xm = L * YR 1 (B-7)

:_ Trajectory1

• _ L ZR

.:! Zm E ¥ YRR (B-8)
•. and

., L XRI

....." = 1

, Xm1 L-+_ l (B-g)

.:. Trajectory 2

.;J L ZRI (B-IO)
"_.: Zml :L + YRI "

If the setsof measuredvaluesare uniqueand Xm and Zm are set equal to

Xml and Zml respectively, then it follows that o, a and Z(t) must equal

" el' _I and Zl(t) respectively.Since it is assumedthat
• .o.._

• -'.?,- lm1 = Xm (B-11)

•_. 149
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then it followsthat

Xml _ Xm

Zm1 Zm Zml _ o, Zm t o. (B-13)

From (B-13)and the equationsdefiningthe measuredvaluesfor both trajec-

torieswe have

XR- XRl (B-14)
ZR ZRI"

From (B-14)and the equationsdefiningthe trajectoriesit followsthat

cos o cot _ = cos B1 cot _I" (B-15)

,: The definitionof uniquenessrequiresthat e = oI and ,_= '_Ibe the only

_ solutionof (B-IS). Solving(B-IS)for _l yields

: _I = c°t-l(cose cot _ sec oi). (B-16)

" Sincethe domainof the inversecotangentis the set of realnumbersthere

are no restrictionson o](forfixedo and _) for (B-16)to hold. This

indicatesthat (B-16)has an infinitenumberof solutionswhich indicates

that uniquesetsof measuredvaluesdo not exist. Thereforethe construc-

tionof an exactcorrectiontechniqueis not possiblesinceuniquenessis

requiredfor its existence.

This resultindicatesthat an operationalcorrectiontechnique

•_ must be supplementedwith additionalapp_ximate informationabout the real

.._ trajectory.This additionalinformationfor the firstphase correction

_ techniquetakesthe formof th_ assumptionthat all observedtrajectories
j,

. - .j.
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will be closeto the jet axis. Considericgthe jet-likenatureof the

plumeduringthis phase,thisassumptionis a rathergoodapproximation.

It followsthatthe closerthe observedtrajectoryis to the jet axis, the

greaterthe accuracyof the correctiontechnique. The correctiontechnique

will thushave the potentialof being exactonlywhen the observedtrajec-

tory correspondsto the jet axis. It also followsthatthe accuracyof a

correctiontechniquebaseduponthis typeof supplementalinformationis

: dependentuponthe spreadingof the plume (andhencethe trajectories).

While the calculationof the plume'sspreadingis tenuous,it is possible
%

to use filmobservationsto estimatethe maximumangulardeviationfrom

the jet axis. Sincethe error in the correctiontechniqueincreaseswith

spreading,the use of thisestimationwill ,-oducemaximumerror. Visual

estimationfromthe MFSC films,indicatesthat the spreadingis on the

. order of I0 to 15 degreesaboutthe jet axis. The verificationwas done
:,

usingthisestimate.

,, B.3 Resultsof Phase1 Verification

The basicassumptionfor the phase l correctionis thatthe plume

• is orienteda_ongthe jet axis,determinedby the azimuthangleand the
4

-_ firingtower'sdeflectionelevationangle. If the trajectoryof a point

::T• followsthe jet axis then it followsfrom themethod,thatthe estimatesof

the trajectoryhave no error. Sincethe correctionis purelygeometric,any

reasonablemathematicaltrajectorywill sufficefor the accuracytest. The

,w)stmeaningfulparametersfor the trajectory,in termsof the physicalsit-

uation,are the azimuthand elevationanglesof the pointswhich form it. It

is, therefore,possibleto speak in termsof maximumangulardeviationsfrom

thejet axis. Physically,this correspondsto one-halfof the angularwidthcf
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the plume. The most convenient trajectory for analysis is a straight

line segment passing through the origin with azimuth and elevation angles

given by ,_and , respectively. The verification may now be run for sev-

eral trajectories with suitable estimates of ._and .:_.Preliminary ._sults

which have been obtained with the deviation set a + lO°, indicate that

the corrected value is always a better estimate than the raw uncorrected

data. The error in the corrected data increases with height except for

trajectories which coincide with the jet axis.

Since all but one transitior _,eightis less or equal to 220

uncorrectedmeters (average = 189.9), it seems logical to set this as the

upper limit for the phase l trajectory. Therefore, the use of this phase

I limit will slightly overestimate the error for a majority of cases.

: Table B-I shows the results of the first phase verification with

a plume width of 20° , the jet axis defined by an elevation of 30° and azi-

muth of 40° for a transition height of 220 meters. For the purpose of

physical orientation, the true azimuth or compass reading may be obtained

by subtracti,lgthe azimuth reading given here from 270°. The values in

Table B-I were obtained from each of the listed trajectories by selecting

real points with a measured vertical height closest to 220 meters. The
i

information in Table B-l was subjected to an error analysis and the results

sumarized in Table B-2. The first two columns of Table B-2 represent the

real correction factor and estimated covr._ctionfactor, while the last

three columns present the percentage error in the uncorrected data, error

in the X and Z values of the corrected values and error in the Y value of

the corrected data respectively. From Table B-2 we conclude that:

• , 152
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I. Whilesubjectto error,the phasel correcteddata is a

betterestimatorof the real laluesthan the uncorrecteddata.

2. The absoluteerror in phase l correctiontechniqueis most

probablynot more than two percentfor a plumewidth of 20° {thisis based

on the transitionheightas explainedabove,and the factthatparticles

with an azimuthof 50° are most probablyon the oppositesideof the plume

and thusare not likelyto be seen,and hencemeasured).

3. YE is seen to have a re.lativelylargeerror and,while not

relevantto our study,shouldbe dealtwith cautiouslyin any other studies.

4. The method works best in areas where the real correction

factor is small. Implicit in this conclusion is the basic criterion for
.-

the success of this method; that the deviation of the plume from the camera

" plane must be small when compa_d to the observation distance.

B.4 Phase 2 Verification

Becausephase 1 errors are carried over into the phase 2 correc-

: tion,the realisticverificationof the phase 2 techniquemust includean

analysisof the effectsof phase l errors. Thiswas accomplishedby treat-

ing the phasel and phase2 verificationas a singlemathematicalinvestiga-

: tion. In the t_sting,timewas usedas the independentvariable. This

requiredrewritingthe phase l programwhich used heightas the indeperd-

ent variable. To do this,the additionalinputof verticalveloci-y

of the pointalonga trajectoryduringphase 1 was required. Phas_ 2

errorsare also influencedby errorsinmeasurementof transition

height. The generalcorrectiontechniquecalls for the applicatio,

of the phasel procedurebeluw the transitionheightand the application

of the phase2 procedureabove the transitionheight. An overe_L_mationof

:' 155
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transitionheightwill resultin applicationof the phas_l techniquein

a regionwhere the phase2 procedureshouldhave beenapplied. The time

and coordinatesof the pointas it reaches_he transiti,.,1heightare used

as an inputto the phase2 procedure. In essence,the phase2 technique

usesa numericalintegrationof the horizontalwird as a functionof height

tu the trajectoryof a point. The transitie,and phase l errorsmay _e

thoughtto be errorsin the initialconditionsof the integration.The

thirderror consideredin the phase2 verificationis the error inherent

in th? numericalintegrationitself.

The followinginputsare neededto simulateand vcrlfythe

totalcorrectionht_)cedure:

I. averageverticalvelocityduringphasel

2. averageverticalvelocityduringphase 2 (usedin numerical
integration)

3. transitiontime (usedto definetransitionpoint)

4. transitionheight(usedto estimatetransitionpoint)

5. the azimuthanglefor the jet axis

6. the elevationangle for the jet axis

; 7. the azimuthanglefor the phaseI trajectory

• 8. the elevationangle for the phase l trajectory

g. the horizonta',velocityprofilei._termsor"u and v as a
functionof height(used in numericalintegration)

Quite clearly,the combinedverificationis considerablymore complexthan

the phasel verification.Eachof the aboveparametersma} be varied

i:'dependently,leadingto severaldifferentconclusionsabout the validity

of ti_ecorrectiontechnique,dependinguponwhich parametersare variedand

to what degree. Sinceg_neralizingto the degreedone in the phasel testing

r"

..
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l
!

is virtuallyimpossible,a casestudy approachwas adopted. Thisentailed

.: the estimationof the independentparametersfrom the data for each of the

ten trialcases. Specifically,the verticalvelocitieswerecalculatedfrom

the measureddataset; the velocityprofileswere obtainedby a pelynomial

regressionanalysisof soundingdata. The measuredtransitionheightand

time wereassumedto be goodestimatesof actualvalues. Table B-3 s_nma-

rizes someof the valuesusedas inputs,

TableB-3 Inputsfor the co_ined testingof the phasel and 2 correction
:- techniques

............. ll,

• Average
:. Transition Verticalvelocity Jet axis

.......... Distance ••
:. Height Time PhaseI Phase2 to Azimuth Elevation
" Case# (m) (sec) (m/sec) (m/sec) camera (o) (o)
:" ..... jl

"% l
9" TWF026 196 9.0 21.8 Il.6 4116 42 30

" TWF027 204 g.o 22.7 13.0 4116 42 30

,-, No. 23 172 7.0 24.6 12.3 4116 222 30

,. TWF037 134 7.0 Ig.l 7.5 4116 42 30
.,_-

_ _ SIC05 220 5.0 44.0 27.7 3475 22.5 lO
..-_.

TWF056 217 g.0 24.l 15.8 4116 228 30
" °;C

 Fo3] 293 ]3.o 22.s8 1].3 4116 42 30
:: TWF034 148 7.0 21.l J- 6.6 4ll6 42 30

TWF033 II8 5.0 23.6 13.6 4116 42 30

SIC05 197 5.0 39.4 31.3 3475 22.5 lO

°

, 4
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To obtain wind data for the numerical integration, soundings for

each test were analyzed as follows:

l. Wind velocity and direction were tabulated in intervals of

lO0 meters to lO00 meters and intervals of 250 meters from lO00 to 2000

meters.

2. The northerly and easterly componentsof the wind were calcu-

lated and subjected to a regression analysis. This resulted in the genera-

tion of 5th order polynomials in height for the wind componentsin each

_ case. This was necessarybecausethe verificationrequiredan analytical

- solutionfor the trajectoryfor eachcase.

FigureB-l showsthe basicflowof the generalverification

program.

.. ;'.

)_ trajectory I r_neasured" data set

y IComparedcorrectedvalueswith I_ Apply correctionI Generatephasel

: : ._ _- or transition
:_ valuesfromrealtrajectory procedure error

;" FigureB-I Flowdiagramof verificationprocedure

B.5 Phase2 Results

For each caseshown in Table B-3, the transitionheightwas varied

throughfour valuesand the azimuthand elevationanglesof the phase l
t"

•:- trajectorywere both independentlyvariedthroughthree values. Thus,
T

. _ twenty-fourhypotheticalsituationswere lookedat for each case for a total

_ of 240 experiments.Due to the volumeof the results,only a few experiments

will be presented.

• "'• "i
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The error in the phase 2 numericalintegrationcan be assessedby

settingthe phasel and transitionerrorsat zero. This resultsin the

conclusionthatthiserror is negligible.Table B-4 which presentsboth

the inputand outputdatafor case SIC06illustratesthis. Partb of the

tableliststhe generatedor "real"trajectory,the "measured"values,the

estimatedvaluesand the realand estimatedcorrectionfactorsas functions

of timeafter firing. In this case,the phase2 periodbeginsat t=_,and
;.

any deviationof the estimatedvaluesfromthe generatedtrajectorymust be

due to the numericalintegration.The largesterroroccursat t=37and, for

the X and Z coordinates,amountsto about l in 450, which is negligiblein

comparisonwith the inherenterrorof the filmmeasurementtechnique. How-

- ever, the errorin tF.eY coordinateis much larger(l in 63).

: Sincethe integrationerroris negligible,the effectsof transi-

tionerrorscan be assessedby settingthe phase1 error to zero (accomplished

_._: by assumingthatthe phasel trajectoryis alongthe jet axis). The transi-

:,,, tionerror is simulatedby holdingthe transitiontime constantwhile varying
"S

.v the transitionheight. In practice,the transitionheightwas set to zero
.o,-

_ and to valuescorrespondingto + I00metersof the transitionheight. It_,,.

":" is highlyunlikelythat sucherrorswere made in the measurementof the

transitionheightand, therefore,theseresultsoverestimatethe true error.

TablesB-5 and B-6 presentthe inputvaluesand resultsfor the variation

of transitionheightby + lO0 and - lO0 metersrespectively.Sincethe

jet axis,horizontalvelocitycomponents,and verticalvelocitieswere not

varied,theyare presentedin Table B-4 only, The underestimationof the

'_. transitionby I00 meters (TableB-5) in termsof the correctiontechnique

- is equivalentto the assumptionthatthe cloud is in the phase ? region
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fromthe timeof firing. This resultsfromthe fact thatthe correction

techniquerequiresthat transitionheightbe equivalentto one of the

verticalcoordinatesof the generatedtrajectory.Becausethe timesequence

(0, 3, 5, 7, etc.) usedis discrete,the transitionheightis adjustedto

a heightcorrespondingto the transitionpoint in Table B-3 as follows:

if Zn < ZT < Zn+l

r
|

then ZTp = Zn

I where Zn and Zn+l are two consecutiveverticalcoordinatesof the generated

trajectoryan_, ZT and ZTp are the transitionheightand pointrespectively.

Two major pointsmay be drawn fromTable B-5: (1) the estimated

values(withthe exceptionof the Y coordinate)are betterestimatorsof

the generatedtrajectorythan the "measured"values,and (2) thatthe Y

• estimatecannotbe consideredaccurateand, therefore,representsa parameter

fromwhichthe X and Z estimatescan be calculated(formore detailsof

the natureof the Y estimateseeAppendixA).

Table B-6 indicatesthatoverestimationof transitionheighthas

considerablyless impacton the error in the correctionthanunderestimation.

The X and Z estimatesare accurateto one in seven.

The error causedby deviationsof the phasel trajectoryfromthe

jet axiswas assessedby settingthe transitionerrorto zero. In termsof

the accuracyof the estimatedvalues,as comparedto the measuredvalues,

thereexistsisolatedpointsfor which the measuredvalue is a betteresti-

mator. Table B-7 givesan exampleof this.

The correctionfactorresultsfor t=5 indicatethatthe measured

valueis a betterestimatorof the generatedtrajectory,however,in practical
i

termsthe error in both is the same.
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The reaaining nine cases are similar, with the c_nbined errors

of the first phase trajectory &,.dtransition both augmenting ar.dnulifying

the general error of the correction technique. In the case that the errors

augment each other, there are isolated sets of points for which the measured

values are better estimators. However, these points are a minority, and it

may be argued that the use of the estimated values increases the overall

accuracy of the data.

°.

f
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C-I Staticengineexhaustclouddata

i

: Rate of
Height of I Cloucl Cloud Rise

Time Cloud Rise, z I Ar)A dz/dt l(sec) (m) I (msec- )
Case THF034

• . |

3 74 4119 I 36.3

5 123 9946 ) 14.07 151 14315 3.5

9 158 16153 I 20.2

11 198 22650 8.2

13 215 27137 10.8

15 236 29780 14.3

17 265 34994 13.8

lg 293 37]73 10.2

2l 313 43622 g. 3

25 35! 49037 8.8

29 386 57203 9.7

33 , 425 68328 6.7

37 452 73022 7.6

_1 483 77752 2.9

45 495 84620 7.0

49 523 91134 5.9

53 546 100450 8.5

57 580 109550 8.3

6l 614 116360 8.5

65 648 ]25240 5.4

69 670 134930 6.9

73 698 142940 7.3

77 727 136930 5. l

81 748 149560 2.3

85 757 ]49510 6.0

89 781 152970 1.6

Continued
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Table C-I Static engine exhuast cloud data - Continued

Rate of
Height of Cloud Cloud Rise

Time Cloud Rise, z Area_ A dz/dtl
(sec) (m) (mz) (m sec-)

Case TWF034 - Continued

93 788 150870 8.3

97 821 152410

Case TWF033

3 78 4245 20.5

5 ll9 8538 9.6

7 139 14104 I1.5

9 162 19279 22.7

• 11 207 26441 18.9

13 245 31651 16.8

. " 15 279 38360 12.0
• . }.

"" 17 303 i 42748 8.7

'-" l9 320 ] 49999 9.9

-.

. _ 21 340 63295 lO,3

-"-- 25 382 _ 70205 13.5

29 436 81981 16.I

33 500 87377 16.0L
• : _ 37 565 100450 16.2

• ._, 41 630 I14350 13.6

_: 45 684 130610 12.8

;_ 49 736 150710

Case TWF031

3 130 8956 17.7

5 166 13385 15.2

7 197 17804 20.8

_: 9 238 22235 14.9

11 268 27758 17.4
.- . P

Continued1
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J Table C-I Staticengineexhaustclouddata - Continued

Rateof
Heightof Cloud CloudRise

Time CloudRise,z Are% A dz/dtl
(sec) (m) (mz) (m sec-)

CaseTWF031- Continued

13 303 1 33020 12.1
I

l 5 328 _ 37880 12.9
17 353 45025 20.1

19 394 ! 47232 10.4
:. 21 415 t 51831 l 0.8

: 25 458 I 53369 lO.7

: 29 501 J 59928 12.4f
Ill 33 550 1 63729 9.7

_: 37 587 tl 71281

CaseTWFO56
i

... 3 90 t 6302 22.5
" 5 135 i 12658 22.0";.:

::.- 7 179 15702 21,5

_: 9 222 20872 13.l

_( 11 248 27293 16.9_-

(_. 13 282 31223 22.9

_ ....j l 5 328 37653 18.8
.e,_

•_- 17 366 46762 21.4

_. 19 409 55877 16.3
:" 21 442 _ 60379 18.4

25 515 1 76864 19.3
29 593 ! 100120 21.3

33 678 i 121780 19.2

37 755 i 150320 17.4

: 41 825 I 155620 14.2
_Y I.- 45 882 t 181680 12.3

t

49 931 207110 11.6
., , I ....

_-.

•=" Continued
$."
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Table C-l Staticengineexhaustclouddata - Continued

: ; Rateof
Heightof Cloud '; CloudRise

Time Cloud Rise,z Area, A _ dz/dtl

(sec) (m) (m2) 1,_ (m sec )
Case TWF056- Continued

_3 978 245830 15.2

57 1039 243200
, , J ..........

CaseTWF037

_ 3 98 7007 I0.0

5 ll8 I1289 9.3

7 137 16241 9.6

, 9 156 21318 13.5

II 183 25532 17.6

13 218 29878 12.5

15 244 34925 14.0

: 17 272 41036 17.4

I9 307 39897 7.1

.... 21 321 45649 11.0

; 25 365 53726 9.5

29 403 64801 6.4
. _

33 429 71503 7.9c

"- : 37 461 77830 6.1
• t

: 41 485 88483 9.0

45 522 99211 6.3

_ 49 547 104080 7.8

53 578 114160 7.1

57 607 126490 10.1

61 647 141020 6.4

65 673 147100 9.7

69 712 158580 6.

-:" 73 737 173300 4.3

•.'t- 77 754 188690 7.1

• _ I_
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C-I Staticengineexhaustclouddata - %ntinued

Rateof
heightof Cloud CloudRise

Time Cloud Rise, z Area_ A dz/dt_
(sec) (m) (mz) (m sec"" )

Case ll_F037 - Continued

81 783 204660 3.6

85 797 217900 2.7

89 808 233010 13.5

93 863 268390 14.5

97 868 274210 6.6

101 895 298110 5.5

105 917 317780 -2.9

109 906 308540 5.1

]13 926 345300
• , , , , ,,i ,,

CaseTWF027
,J,,,,, i i . ,,, ,, _ L

3 ] ] 7 8556 9.0

5 135 14137 17.0

7 169 19859 20.5

9 210 26530 19.5

11 249 31463 21.l

13 291 41023 15.8

15 323 46997 ll. 5

17 346 48101 11.l

19 369 50948 13.1

2l 395 54089 12.7

25 446 62408 15.2

29 507 81151 14.4

33 564 85750 20.0

37 644 l 12630 18.8

41 720 140440 13.2

45 773 151730 13.5

49 827 173220 I6.4

Continued
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TableC-l Staticengineexhaustc]ouddata - Continued
r ...........................

Rateof
Heightof Cloud CloudRise

Time CloudRise,z Area_A dz/dt_
(sec) (m) (mz) (m sec-')

CaseTWF027- Continued

53 893 204040 Il.7

57 940 216370 12.0

-" 61 988 248780 13.2

.. 65 1041 264630 8.5

69 1075 293520 6.0

: 73 lI00 298950

CaseTWF026
- _ _ • ,, .... .,,L ........ , , ,,_ , _ _ • ......

• 3 87 7149 16.5
.j

5 120 11400 22.5

_:-- 7 165 18252 18.0

¢ 9 201 20045 10.7
" "4

-. 11 223 23517 15.7
,a

13 254 29817 14.2

15 283 35224 18.2

: 17 319 40560 15.g

t. " 19 351 45958 12.9
• .-::

-: 21 377 51913 9.3

-';: 25 415 62274 I1.6

29 461 68249 12.0

33 510 80283 1I.7

37 557 87445 12.1

41 605 98315 12.0

45 654 103590 8.I

49 686 110990 7.8

"::. 53 717 127300 I0.3

_ 57 759 139410 9.8

•._-;_ 61 799 148190

:. _ Continued
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TableC-I Staticengineexhaustclouddata - Continued
o" .........

Rateof
Heightof Cloud CloudRise

Time Cloud Rise,z Area,A dz/dtl
(sec) (m) (mZ) (m sec-)

Case No. 23

3 108 9718 12.6

5 133 13024 19.4

_ 7 172 16826 10.0

9 192 20881 13.4..

11 219 26026 23.7

-. 13 266 29790 17.6

"-- 15 302 36736 15.2

-; 17 332 38395 16.8

:: 19 366 47299 20.8

21 407 51686 16.2

; 25 472 70319 14.7

,: 29 531 82184 12.3
-~ "_.

,, 33 581 98918 9.4

_ 37 619 116000 4.8

41 F,38 121750 I0.1

._ 45 679 136360 10.1
_ S- 49 719 137050 7.8

-r.

' 53 751 151480 8.7

57 786 148410

:" CaseSIC05
• , _ L • ,,, ...... , ,

3 84 13450 57.2

5 198 40533 32.8

7 264 63621 49.9

9 364 82264 42.9

'_ 11 450 120620 32.7

, 13 515 155720 36.8
h_

._: 15 589 186920 32.8

Continued
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Table C-1 Static engine exhaust cloud data -Concluded

Rate of
Height of Cloud Cloud Rise

Time Cloud Rise, z Area_ A dz/dt l
(sec) (m) (mZ) (m sec-)

Case SICO5- Continued

17 654 210580 14.8

19 684 232790 27.4

21 739 246740 36.0

25 883 249920 36.9

29 1031 284270 29.9

•. 33 1151 323870 25.8
K

37 1254 381300

'_ Case SIC06
z

3 142 19725 40.0

: 5 222 40053 31.9

<': 7 286 61394 35.8.J.

: 9 358 81413 32.6

. 11 423 108490 24.9

_. 13 473 134880 29,3
; l 5 531 ! 72420 20,2

-" 17 572 186030 21.5

": Ig 615 213080 31.8

_ 21 679 234900 26.1
" 25 784 283380 25.5

29 886 333300 28.9

33 1001 380790 26.0

37 1105 431350
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Table C-2 Meteorologicaldata,CaseTWF034,2221Z,SeptemberI0, 1964

gind Viind

Height Temperature Pressure Hu)idity Di_cti on Speedl
(m) (°C) (mb) (%) (degree) (m sec- )

0 15.9 1002 43 310 3.1

I lO0 15. l 990 39 328 4.8

200 14.3 979 36 346 6.6

300 13.3 967 38 349 6.7

400 12.3 956 42 350 6.3

500 lI.l 944 46 351 6.3

-. 600 10.2 933 49 35l 6.4

700 9.3 922 52 35l 6.7
.'?

/ 800 8.6 911 55 351 6.7

•" 900 7.8 900 59 351 6.7

1000 6.7 889 59 350 6.6
.-_

L.. 1250 4.2 862 58 343 6.3

- 1500 5.0 836 II 328 6.5

,.- 1750 4.5 811 11 317 7.3

; 2000 3.7 786 9 312 8.1
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Table C-3 Meteorological data, Case TWF033, 2306Z, August 25, 1964
..... i .........

I Wind Wind

Height Temperature Pressure Humidity Direction Speed_
(m) (°C) (mb) (%) (degree) (m sec-")

0 22.5 lO00 94 130 2,1

lO0 22.4 989 86 138 3,3

200 22.4 977 78 147 4,5

300 22.3 966 72 155 4.3

400 22.2 955 67 163 3.6

500 21.9 944 66 i 187 3.6

600 21.5 934 66 i 218 4.I

700 21.l 923 69 239 4.9

800 20.7 912 75 250 6.0

900 20,3 902 75 259 6.3

1000 19.9 892 74 267 6.3

1250 18.5 866 67 280 6.6

1500 I7.9 841 64 285 7.0

1750 16.7 817 59 288 7.3

2000 15.3 /93 55 293 7.4

_' ]76
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Table C-4 Meteorological data, Case TWF031, 1729Z, August 4, 1964

Wind Wind

Height Temperature Pressure Humidity Direction Speedi
(m) (°C) (mb) (%) (degree) (m sec )

0 33.1 997 60 250 3.1

100 31.6 986 54 262 3.7

200 30.1 975 49 274 4.4

300 29.0 964 53 272 4.5

400 28.! 953 55 275 4.8

500 2/.3 943 58 282 5.1

600 26.3 932 59 292 5.4

700 25.7 922 61 301 5.7

800 25.7 911 61 311 6.2

900 25.4 901 57 319 7.1

1000 25.1 891 52 326 8.0

1250 24.8 866 39 338 9.7

1500 22.7 842 41 344 10.6

1750 20.6 818 46 348 I0.6

2000 18.4 794 58 351 10.4
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Table C-5 Meteorologicaldata, Case TWF056, 2000Z, May 26, 1365

Wind Wind

Height Temperature Pressure Humidity Direction Speedl
(m) (%) (mb) (_) (degree) (m sec" )

0 31.3 991 48 210 4.6

I00 29.9 980 38 207 5.1

200 28.5 969 28 204 5.7

300 27.5 958 32 207 6.0

400 26.3 947 36 207 6.4

500 25.1 937 41 203 7.3

: 600 24.2 926 44 ' 198 8.3

700 23.3 gl6 47 195 9.0

• 800 22.5 905 50 Ig5 8.9

900 21.4 895 53 , 195 8.6
I

lO00 20.2 884 57 ' 195 8.1

1250 18.0 859 60 201 8.7

!

1500 15.7 834 64 206 8.9

1750 13.3 810 65 212 9.6

:_ 2000 II.6 786 73 219 11.3

1i
m I
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TableC-6 Meteorologicaldata,Case _F037, 22_Z, October23, 1964

......... wi.dI wi.d
Height Tem_rature Pressure Humidity Direction Speed_
(m) (°C) (rob) (%) (deg_e) (m sec-")

_ m _ , = ....

0 15.2 1007 43 330 ..l

lO0 14.9 995 31 346 6 3

200 14.6 9_ 20 3 9.5

300 13.8 972 21 3 9.5

12.9 960 22 2 9.4

500 11.9 949 23 360 9.3

600 1]. 0 938 24 358 9.1

700 l 0.0 927 26 357 9.1

i 000 9.1 915 29 357 9.1
I "

900 8.3 904 28 357 9.4

• 1000 7.6 894 23 358 9.9

1250 8.2 C_67 18 358 10.7

1500 7.8 841 26 355 11.0
L'

-. 1750 6.4 816 23 351 l 1.4

; 2000 r.,.5 791 22 34., 11.1

": 179
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lable C-7 Meteorologicaldata, Case TWF027, 2254Z, October 7, 1964

, , • A ............. -I ......... • ......

Wind Wind

Height Temperature Pressure Humidity Direction Speed1
(m) (°C) (mb) (%) (degree) (m sec- )

0 29.0 996 54 20 5.7

]00 27.9 985 48 22 4.7

200 27.0 974 45 24 4.3

300 26.l 963 4l 27 4.7

400 25.l 952 49 24 5.0

: 500 24.2 941 50 17 5.1

600 23.5 9J1 52 7 5.0

: 700 22.5 920 53 357 5.0

:_ 800 21.7 909 54 346 5.0
i

-. - ,

": g00 21.2 899 55 335 5.1

:z 1000 20.4 889 58 326 5•3

-: 1250 18.2 863 64 313 5.9

: 1500 16.2 838 65 311 6.9

'. _ 1750 14.3 814 64 312 8.2

_ 2000 l2.6 7g0 64 314 g.7

" "i""
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Table C-8 Meteorologicaldata, Case TWF026, 2219Z, September 7, 1964

, Wind Wind
eig I emperature J Pressure Humidity Direction Speedl
(m) (°C) "mb)

...... I ..[. (%) (degree) (m sec")

0 28.l 994 75 250 2.l

lO0 27.9 983 70 263 5.8

200 27.6 972 67 275 9.4

: 300 26.7 96l 67 273 9.3

400 25.9 950 67 273 9 .I

: 500 25.1 940 67 275 8.5

600 24.5 929 67 279 7.8

700 23.8 919 67 283 7.2

800 23.l 908 67 285 6.7

900 22.2 898 67 290 6.l

" lO00 21.4 888 66 297 5.5
.-.

,- 1250 19.4 862 71 324 4.I

1500 17.5 838 74 330 4.6

1750 15.7 813 74 330 4.9
.-.

. 2000 14.2 790 67 327 5.4

:,i .....
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Table C-9 Heteorologica] data, Case No. 23, 2237Z, September24, 1964

Wind Wind
Height Temperature Pressure Humldi ty Di recti on Speed
{m) (°C) (rob) (¢) (degree) (m sec-] )

, . ._ , .... , |. , j •

0 21.8 1001 35 300 2.1
!

1O0 2l •6 989 30 309 4.9

200 21.5 978 25 319 7.7

300 20.6 967 24 323 8.4

400 19.5 955 24 323 8.5

500 ]8.6 944 24 320 8.2

600 17.6 933 25 315 7.9

700 16.5 923 25 310 7.6

800 15.7 912 26 308 7 •9

900 14.7 901 27 305 8.0

1000 13.7 890 28 302 7.8

1250 11.1 864 28 292 6.9

1500 8.7 839 31 295 8.0

1750 7.2 8]4 27 303 9.4

2000 7.0 789 20 310 12.8
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TableC-lO Meteorologicaldata, CaseSICO5,2110Z,May 6, 1965

i{ .........

Wind Wind
Height Temperature Pressure H_nidity Direction Speed_
(m) (°C) (rob) (%) (degree) (m sec-")

0 28.5 1002 36 210 1.5

1O0 26.9 I 990 46 177 2.7

200 25.5 _ 979 54 150 4.0

300 24.6 968 55 155 5.4

400 23.7 957 57 161 6.6

500 22.7 946 58 172 6.8

600 21.7 935 59 176 8.0

700 20.9 925 61 174 9.9

" 800 20.0 914 62 177 10.2

, 900 19.1 904 64 182 10.4

: 1000 18.1 893 66 188 10.5
.

1250 15.6 867 70 188 12.3
"::

": 1500 13.1 842 72 187 13.5

_ 1750 l 1.0 817 70 188 15.8

•:_ 2000 10. 8 793 50 195 13.7
." . I .......
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Table C-If Meteorological aata, Case SIC06, 1900Z, May 20, 1965
, _ . : ....................... _ ...........

Wind Wind

Height Temperature Pressure Humidity Direction Speed
(m) (°C) (rob) (%) (degree) (m sec-l)

0 27.5 I001 59 60 3.5

I00 26.4 990 63 55 3.2

200 25.4 979 67 50 2.8

300 24.3 968 69 48 3.3

. 400 23.3 957 70 49 4.7

• 500 22.3 946 71 50 6.2

"" 600 21.3 935 70 53 6.4

700 20.3 924 70 55 6.6

800 19.4 914 69 60 6.9

• 900 18.8 903 66 68 7.4
"L"
.;.

I000 18.3 893 64 77 7.9
-_:

" 1250 17.4 867 58 108 8.9
!

t-

"C- 1500 15.6 842 65 133 9.4

: 1750 13.7 818 63 154 9.8

• 2000 12.2 794 40 173 11.1

.;

.-...
• ,'%•

;e
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APPENDIXD: METHODOF SOLUTIONTO THE CUBIC EQUATION(Equation2-30)

DETERMININGTHE TRANSITIONHEIGHTOF EXHAUSTCLOUDRISE

Recallthe followingequationfor determiningthe transition

heightof exhaustcloudrise:

l

-g_Zo2)] = l. 12-30)

This is Equation (2-30) in Section 2.2.2.].3.

The equationwill now be rewrittenas

' ('o'Zo' ':_ 3 + [ _ -2 T_ = l (D-l)

,, Now,IEt

_" 3 OeC_e_ (D-2)! - a=_
0.

"C"

-- ] (Wo3Zo3 3 Oe__c z02) (D-3):.. b =.ET - ._-
• .'-i'

,. Z=z 2 .
o': 1

: Substitution of Equations (D-2), (D-3), and (D-4) into Equation

(D-l) will yield

a b
_z+ _-_- I = O.

_.

: Multiply both sides of Equation (D-5) and rearrange terms,

: and we have:6
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Z3- aZ- b=O (D-G)

which is a cubicequationin Z (z12).

The solutionto Equation(D-6)is well knownand can be written

as

A+B A-B A+B A-B
z=A ---_-+T _' Vz_ (_7)--_---_-

where jll

27

B= _ - 27 " (D-_)

The solutionof Z from Equation(D-7)will varyaccordingto

the followingsituations:

If b2/4 - a3/27 > O, therewill be one realroot and two

: conjugateimaginaryroots.

: If b2/4 - a3/27= O, therewill be threereal rootsof which

two at leastare equal.
C

_ If b2/4 - a3/27- O, therewillbe threereal and unequalroots.

Gbviously,the solutionwe are interestedin is the first

root in Equation (D-l).

z -A + B (_1o)

• _. In order to obtain (O,lO),the following conditions have to be
_-:.

6:" satlsfied:,_._,_

• o

q_
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b2/4 - a3/7 > O, in this case the real root Z = A + B

is desired.

b2/4 - a3/7 = O, in this cas_A = B, or Z = 2A = 2B is

the root desired.

Combiningthe two relationships and writing them in terms

i of real parameters, we have
I

3 A ]3
[k-3(Wo3Z03 - 3 _ Z02)]2 [ 2

4 2i
t

which is identical with (2-29) in Section 2.2.2.3.

Whenthe situation b2/4 - a3/7 = 0 arises, a further condition

has to be met in order to have solution in Z:

- b > 0 (_12)

or

L

Wo3z 3 >_ (D-13)•. o 2 Z02

: which, incidentally, is (2-28) in Section 2.2.2.3.

WhenEquation (D-ll) is not satisfied under general conditions

or Equation (1)-13) is not satisfied under the special situation Just

described, iterative methodswill have to be used to solve Equation (2-26)

numri cal ly.

-.t•
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